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Abstract A..i
---. The compact range allows for the measurement of radar cross section and

antenna patterns in a relatively small room. An offset-feed parabolic reflector is

normally used to approximate a plane wave in the target zone; however, some of the

energy transmitted by the feed will strike the ceiling, walls, and floor of the room.

These stray signals then scatter in all directions. To reduce the level of scattered

energy, the room is typically lined with pyramidal-shaped radar absorbing material.

However, the behavior of this material is not well understood.

A diffraction formulation, based on the Uniform Geometrical Theory of Diffrac-

tion 12, is developed for a lossy dielectric corner. Using this formulation, a

computer code is written that calculates the bistatic scattering fron a pyratni-

dal absorber tip. Sample results display some features of scattering from a single

pyramid. Calculations are then compared with backscatter measurements of a

single pyratiud, and with bistatic measurements jlof an absorber wall. Next, a -- '

11



general purpose computer code is written which calculates the scattering into the

target zone of a compact range from the pyramidal absorber which lines the room.

(A focus-fed semi-circular parabolic reflector with rolled edge-and-a-skirt -4]-il u-

minates the room.Sample calculations show the total power scattered into the

target zone, and how strongly various locations in the room contribute to this total

scattered power. Finally;,calculation .ar om ared with experimental data [5] in

which a 6' × 6' aluminum plate (munted in the Ohio State University compact

range target zone) was used to measure bistatic scattering from the pyramidal

absorber on the ceiling.
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CHAPTER I

INTRODUCTION

1.1 Statement of the Problem

The measurement of radar cross section (RCS) or of an antenna pattern re-

quires that the target or antenna being tested be illuminated by a uniform plane

*wave. This plane wave is approximated in a far-field test range simply by placing

the test object in the far zone of the transmitter, where the spherical wavefront of

the transmitted field can be considered approximately planar. Depending on the

size of the test object and the wavelength being used, this far zone requirement

typically leads to an outdoor facility. The compact range offers an alternative

to the far-field test range for the measurement of RCS or antenna patterns. A

compact range normally uses an offset-feed parabolic reflector to approximate a

plane wave in a relatively small chamber. The small size of a compact range makes

it practical as an indoor facility, thus free from adverse weather, interference, or

external monitoring. Of course, not all of the energy transmitted by the feed will

be directed into the desired plane wave. Rather, some will strike the ceiling, walls,

and floor of the room. These stray signals then scatter in all directions. They

* ,., degrade the nature of the incident plane wave in the target region, and they also

return directly to the receiver, corrupting the desired return from the target. Thus,

they affect the accuracy of the range and the size of its "sweet spot" (the region

where the illumination satisfactorily approximates a plane wave). One method to



eliminate these stray signals might be to make the room large enough so that they

could all be time-gated out; however, this would be prohibitively expensive. In

a room of practical size, some of these unwanted signals can be time-gated out,

others cannot. To reduce the level of scattered energy, the room is typically lined

with pyramidal-shaped radar absorbing material. However, the behavior of this

pyramidal absorber is not well understood, especially for compact range applica-

tions.

In this study, a scattering formulation based on the uniform geometrical theory

of diffraction (UTD) is developed to describe the fields diffracted by a pyramidal

absorber tip. This is then used to generate a computer code for the calculation

of bistatic scattering from the tip of an absorber pyramid. With this code, and a

reflector analysis code that computes the fields incident on the pyramidal absorber

in the chamber, a general purpose computer code is developed which calculates the

energy scattered by the pyramidal absorber to the target region of the compact

range chamber. Finally, various scattering measurements are made to verify the

calculated results. These range from the backscatter of a single pyramid to the

absorber scatter directed into the compact range target zone from the ceiling.

1.2 Motivation

Pyramidal absorber material has been widely used for many years to reduce

the clutter level in anechoic chambers. However, as stated above, the behavior

of pyramidal absorber material is not well understood. The actual levels of stray

signals scattered from the absorber in a compact range chamber have not previously

been calculated. Such information would prove useful in the design of a compact

range chamber, and thus motivates this research effort.
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1.3 Approach

The first goal in this study is the development of a scattering formulation for

a (lossy) dielectric pyramidal tip. The pyramidal tip is analyzed as a corner in a

three-dimensional wedge, which has four planar faces and four edges intersecting
4

at a common point. Thus, a dielectric corner diffraction formulation is needed.

In Chapter II, the expressions for diffraction from perfect conductors are re-

viewed. These include two and three-dimensional wedge diffraction (1,2,3,4], along

with corner diffraction [5]. An understanding of these is necessary for one to ex-

tend the perfectly-conducting corner diffraction solution to the case of a dielectric

corner.

Chapter III begins by investigating dielectric modifications that have been

made to the UTD for simpler geometries. The first was developed by Burnside and

Burgener [6], who studied the problem of edge diffraction from a two-dimensional

dielectric slab. This was based on the effect of the dielectric on the discontinuities

at the shadow boundaries, and accounted for the multiple interactions occurring

within the dielectric slab. Next, DeWitt [7) considered a similar modification

for the more general problem of a two-dimensional dielectric wedge. Owing to the

added complexity of the wedge problem, the method of solution was found through

a heuristic argument. However, comparisons with a Neumann series solution byS

Rawlins 181 show good agreement.

Chapter III then proceeds to further thest, efforts. Sections 3.5 and 3.6 extend

*the dielectric modification of [7] to the problems of three-dimensional dielectric

wedge and corner diffraction, respectively. The most significant complication here

involves the matter of field polarization inherent in the three-dimensional problem.

An interesting result is that the dielectric material causes a cross-coupling in the

3



polarizations of the incident and diffracted fields.

Chapter IV applies the UTD dielectric corner diffraction solution to the prob-

lem of the absorber pyramid. The interpretation and calculation of the variables in

the dielectric corner diffraction solution represents a significant task, and is thus

described in detail. The resulting code, referred to as the Absorber code, com-

putes the bistatic scattering from a pyramidal absorber tip. Sample calculations

for various monostatic and bistatic geometries are then presented.

Chapter V considers the absorber scattering that takes place in a compact

range chamber. The fields from the range reflector which illuminate the absorber

are calculated through a modified version of the Semi-Circular Compact Range

Reflector Code [9], while the fields subsequently scattered by the absorber to the

target region are calculated by means of the Absorber code. (This is done in a

general purpose computer code, program CHAMBER, which calls the reflector and

absorber codes as subroutines. CHAMBER allows many parameters to be varied,

and provides several output options.) The method of calculation is first described

in some detail. Sample calculations of absorber scattering in a compact range are

then presented.

Chapter VI provides experimental verification of absorber scatter calculations.

First, the backscatter of a single pyramidal tip is measured, and is seen to compare

* well with calculations. The topic of addition of the scattered fields from several

pyramids is then discussed, since this is relevant to the remaining experiments.

Next, calculations are compared with measurements of bistatic scattering from a

S--wall of pyramidal absorber. The results are very encouraging, since the calculations

predict both the magnitude and the frequency behavior of the measured absorber

scatter. Finally, an experiment is described in which the reflected fields from a

large plate are directed toward the ceiling absorber (of the Olio State University

4



compact range chamber) and are then bistatically scattered by the absorber to the

reflector and received by the compact range. Again, calculations agree well with

measurements.

Chapter VII presents a summary and conclusions. In appendix A, the opera-

tion of program CHAMBER is discussed.

I
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4 CHAPTER II

DIFFRACTION FROM PERFECT CONDUCTORS

2.1 Introduction

This chapter begins by describing the UTD solution for scattering from a

perfectly-conducting two-dimensional wedge. Two ray-fixed coordinate systems

are then introduced and used to put the UTD solution for a perfectly-conducting

three-dimensional wedge into a compact form. Lastly, diffraction coeflicients for a

corner in a conducting flat plate and a three-dimensional wedge are presented.

2.2 Two-Dimensional Wedge Diffraction

Consider an electric or magnetic line source illuminating an infinite, perfectly-

conducting wedge formed by two plane surfaces, as shown in Figure 1. The total

UTD solution for this problem consists of an incident, reflected, and diffracted

field. The incident field is the source field in the absence of the wedge (although

one must take into account the shadowing of the wedge). The reflected field is

that field reflected from the surface of the wedge with the edge ignored. Region I

contains incident, reflected, and diffracted rays; region 11 contains incident and

diffracted rays; and region III contains only diffracted rays. The incident and

reflected fields constitute the classical geometrical optics (GO) solution. Alone,

this solution predicts zero fields in region III (the shadow region), aad disconti-

nuities exist at both the incident and reflected field shadow boundaries. It is the

60
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Figure 1: UTD ray paths of a line source radiating in the presence of a wedge.

diffracted field that exists in the shadow region, and it is the diffacted field that

combines with the geometrical optics field to produce a total field which is contin-

uous across both shadow boundaries. Keller (1,2,3] first introduced the diffracted

field in his geometrical theory of diffraction (GTD), yielding a simple geometric

interpretation of the fields associated with the currents excited at the edge of the

wedge. lowever, one limitation of his solution was that it was singular at the

shadow boundaries, where the diffracted field is most significant. Kouyoumjian

and Pathak 141, using asymptotic methods and the exact eigenfunction solution

for the wedge, developed a uniform geometrical theory of diffraction ansatz within

- "the context of Keller's solution. Their solution eliminates Keller's singularity by

introducing a multiplicative factor that approaches zero at the shadow boundaries.

7



The total UTD solution for the wedge is given by

Utotal = Uinc Uref + dif (2.1)

where u represents an electric (magnetic) scalar field for illumination by an electric

(magnetic) line source. The line source is located at (py, 4/) with respect to the

edge, while the receiver is located at (p, 4). The incident field is given by

= = K ' in regions I and II, and (2.2)

0 in region III

where pi is the distance from the source to the receiver, k is the wavenumber of

the medium surrounding the wedge, and K is a complex constant. The reflected

field is given by

ref-- ±K -j in region I, and
U Lef- (2.3)

0 in regions II and III

where pr is the distance from the image of the line source to the receiver, and the

+(-) sign is used for the case of a magnetic (electric) line source. The diffracted

field is given by (4)

dif ~ u'(Qe) Da-- (2.4)

where uin(Qe) is the field incident on the edge, ad the diffraction coefficient, D.,

is written as

Ds cot FkL'a+( - 0)) + (2.5)

A 2u 2irk ~ I;J

cot + F kL'a (O + 0)]}

8



The transition function is defined by [4]

F(m) = 2jI/ze j i /  e - jr2 dr (2.6)

where one takes the principal branch of the square root,

a()- 2cos2 [2nwN1 - (2.7)

where NJV' are the integers which most nearly satisfy the equations

27rnN ± - =±r (2.8)

and

n = 2- WA/r (2.9)

where WA is the wedge angle. Note that the ej "' time convention is assumed and

suppressed throughout this study.

The subscripts s and h on the diffraction ceficient, D., correspond to the

cases of the electric and magnetic line sources, respectively (these are the soft

and hard boundary conditions). The four terms in the diffraction coefficient cor-

respond to the "n face" incident shadow boundary (ISB), the "o face" ISB, the

"n face" reflection shadow boundary (RSB), and the "o face" RSR; respectively.

(The o and n faces may be chosen arbitrarily, whereas the angles 0 and 0' must

be measured from the o face.) The transition function, as introduced by Kouy-

ounijian and Pathak (4), contains a Fresnel integral which is easily evaluated using

a computer algorithm. The magnitude and phase of the transition function are

shown in Figure 2. Note that when x > 10, F(x) - 1. The region near a shadow

boundary, where F(x) is not close to one, is called a transition region. In a tran-

sition region, the high-frequency diffracted field can not be considered ray-optical.

9
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Figure 2: Transition function.

The L parameters are known as the distance par-neters, and are given by

LPP (2.10)

L' = P'P (2.11)

L = - (2.12)

where p, and p afre the caustic distances for the reflected wavefronts emaliating

from the edge for the it amd o faces, respectively. (For a wedge comlxwd of two flat

faces, p p" = p.) The functions a*(.) are a measur of the angular separation

between the field point asrd the shadow boundaries. Finally, note that the following

rules must be observed:

1. L' > A/10 (necessary for asymptotic solution)

2. 0 0,0 5 nx , and

10



3. If 0' = 0 or 0'= nr, one has grazing incidence and must multiply the diffrac-

tion coefficient by 1/2.

2.3 Three-Dimensional Wedge Diffraction

In the previous section, the scalar fields associated with a cylindrical wave

incident on a perfectly-conducting two-dimensional wedge were considered. The

-problem of the three-dimensional wedge (formed by two plane surfaces) is similar

in that the total field again consists of incident, reflected, and diffracted fields.

However, the three-dimensional case deals with a point source, in general, and

thus illumination by an obliquely incident spherical wave. Also, the incident field

may be arbitrarily polarized. To simplify the expressions for the reflected and

diffracted fields, two ray-fixed coordinate systems will be introduced.

Consider an electric field E' incident on a perfectly-conducting planar surface,

as shown in Figure 3. Let h be the unit normal vector to the surface, I be the

incident unit vector from the source to a reflection point QR on the surface, and

i be the reflection unit vector. The vectors fi and i define the ordinary plane of

incidence. One may then define the following unit vectors:

= xf (2.13)
I, .xil

fi'l= I x f2 ,and (2.14)

= x iq (2.15)

where ± and 11 indicate vectors perpendicular and parallel, respectively, to the

* ordinary plane of incidence. These orthogonal unit vectors form a ray-fixed coor-

dinate system. The field of a ray traveling in the incident or reflected directions is

completely specified by its components E.L and Ell. Thus, the reflected field Er(s)

0

__ 11
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i' Figure 3: Ray-fixed coordinate system for 3D reflection,

at a distance along the iel et at r the reflectedion point Q may be written

as
E() = 1 0 E111(QR) e- _$ s (2.16)

SEl (a) 0-1 E' (QR )

| where E'(QR) is tihe field incident at QR. Thle reflected field can also be written

E"(3) = E'(QR) .,-ks (2.17)

where IZ is the dyadic reflection coefficient and is given by

(2.18)

To exanine the diffracted field in this problem, consider a source point and

observation point as shown in Figure 4. Let the distance from the source point to

12



the edge diffraction point (QE) be denoted by st, and the distance from QE to the

observation point be denoted by &. Let fl,, be the angle of incidence; that is, the

angle formed by the incident ray and the diffracting edge. When an incident ray

strikes the edge, it produces a cone of diffracted rays. The axis of the cone is the

diffracting edge, while the cone half-angle (the angle of diffraction), 80, is equal to

the angle of incidence, fl,. The equality of these two angles uniquely determines

the edge diffraction point, QE.

Let i be the unit vector parallel to the diffracting edge, I be the incident unit

vector from the source to the diffraction point, QE, and 1 be the diffraction unit

vector from QE to the observation point. The plane defined by 6 and I is the edge-

fixed plane of incidence, while the plane defined by i and b is the edge-fixed plane

of diffraction, as shown in Figure 5. One may define the following unit vectors:

l = -&x[ (2.19)

= - 'xI (2.20)
&xD

, X x 1 and (2.21)

#0 " xD . (2.22)

The unit vectors 0^' and a' are parallel and perpendicular, respectively, to the edge-

fixed plane of incidence, ad form the ray-fixed coordinate system fU the incident

ray; the unit vectors jo and 4 are parallel and perpendicular, respectively, to the

edge-fixed plane of diffraction, and form the ray-fixed coordinate system for the

diffracted ray. (Recall that in the case of 2D wedge diffraction, the specification of

S -the o and n faces was arbitrary. In the current problem, one may arbitrarily assign

the direction of i. Once chosen, however, the o and n faces are also deternined.

This results from the unit vector definitions above, and the conventions shown in

Figure 4.)

13
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Using these vector directions, the diffracted field at the observation point is

written as

[Eo() - 0 ] 'N(QE) p e- k" (2.23)
E(S) 0 -Dx [ E )QE ]'(P+ 4)

where

D cot - / [' F[kLa+( - ')]+ (2.24)
2nrA7- si-l

cot F[kLa(0 - 0')]}

:F{ cot FkLa+(O + 01)1+

cot F~kLa- (0 + O/)]

Since the wedge is formed by two plane surfaces, the distance parameters in all

four terms of the diffraction coefficient are given simply by

L = Sal sin2/,
0  (2.25)

S+s'

The functions ai(.) and F(.) were defined earlier. The diffracted field may also

be written as

E d() ,E(QE) P e -  (2.26)Ed~s)Ei(Q)'D (p+a)

where D is the dyadic diffraction coefficient and is given by

V -- D h - Dh • (2.27)

The geometrical optics and edge diffracted fields that have been presented are

high-frequency asymptotic solutions to Maxwell's equations. They are not valid

at or near field caustics (although one may allow the field point to cross a caustic

by introducing a proper phase shift). The large parameter in the asymptotic

16



approximation for the edge diffracted field is kL, which means that fo, 8, and 9'

cannot be arbitrarily small. The incident field is assumed to be slowly varying

at the edge diffraction point, except for its phase variation along the incident

ray. Also, one should note that this presentation has been limited to a wedge

formed by two plane surfaces, with a straight edge. Curvature of an edge primarily

modifies the spread factor, while surface curvature primarily modifies the distance

parameters. A much more detailed and general presentation of this subject can be

found in [4].

2.4 Corner Diffraction

The three-dimensional edge diffraction solution dealt with thus far has been

for an infinitely long edge. In an actual physical problem, the scattering object

must have finite length edges. Burnside, Wang and Pelton (5] have developed a

corner diffraction coefficient which compensates for the termination of the edge.

Their solution is based on the equivalent edge currents that would exist in the

absence of the corner. They employed these currents in the radiation integral,

and evaluated the integral asymptotically. This analysis was characterized by a

saddle point near an endpoint. The corner diffraction term was then found by

appropriately (but empirically) modifying the asymptotic result. Their solution

has proven to accurately predict the scattering from many plate geometries.

The corner diffraction geometry is illustrated in Figure 6, where a corner

exists in a perfectly-conducting flat plate. The corner diffracted fields are broken

down into components associated with each individual edge. In Figure 6, the

corner diffracted fields associated with the i directed edge are considered. For the

source and observation points indicated, there is an edge diffraction point indicated

by QE. As the observation point moves in the -i direction, the diffraction point,

17
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Figure 6: Corner diffraction geometry.
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QE, also moves in the -i direction. Eventually it moves beyond the physical limits

of the edge, and the edge diffracted field stops abruptly. The corner diffracted

field compensates for this discontinuity, as the edge diffracted field compensated

for the discontinuities in the GO field. Whether QE is on the edge itself, or on the

imaginary extension of this edge, the corner diffracted field will exist.

The angles #o,,, 3c, and foc, and the distances a', aISC) and a are illustrated

in Figure 6. The vector directions used to express the incident and diffracted fields

are given by

- Xi
4)' - (2.28)

AC= 4xI (2.29)

axb4 = ' 'and (2.30)

,8c - xD . (2.31)

The corner diffracted fields associated with one corner and one edge of a perfectly-

conducting flat plate in the near field with spherical wave incidence are given by [5]

PC M (Qc) Ca(QE) e-j,/ 4

J - Eo,(Qc) Ch(QE) v/ (cos/oc - COsI c) x (2.32)

F (kL,,a(7r + iPoc - PC)]

where

Cs (OB) = _-jw/4 Fj (04 IF [ La(0-0')/A
Ca(QE)k s - iA~(2.33)

9 I
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Note that the transition function was defined earlier, while the distance parameters

are expressed as follows:

L .1 + .5 sin 2 PO (2.34)
LC= 8C +a (2.35)

and

± (2.36)

The corner diffraction coefficient, C.(QE), is a modified version of the edge diffrac-
h

tion coefficient, Da(QE). The modification factor

IF [ La(O*01 ]I

is a heuristic function which helps to avoid the abrupt sign changes in C,(QE) as
h

the observer passes through the geometrical optics shadow boundaries of the edge.

The corner diffracted fields associated with the other edge are treated similarly.

Thus, depending on the source and observer locations, there may be edge diffracted

fields from either or both edges, but there will always be a corner diffracted field

term associated with each edge. The total effect of the corner is found by su-

perimposing the contributions associated with each individual edge. This topic is

discussed further and applied to a number of plate geometries by Sikta et al [10].

Consider now the case of a corner formed out of a three-dimensional wedge.

The corner of a cube is an example of this type of geometry. The corner diffracted

fields assorlated with one corner and one edge of such a perfectly-conducting three-

dimensional wedge in the near field with spherical wave incidence are again given

by Equation (2.32), where the corner diffraction coefficient is now written as

20



_e-jw/4

CS = (2.37)h 2nV2- sin A,

[{cot[+ '] F[kLa+(4' - 0)] IF [. L.+ )]+

cot F[kLar(4 - 0)] IF [La,- -, OL)J }
:F cot[± -] F[kLa+ (0 + 01)] JF [ a(+1/

cot[ - P2]]F[kLa-(, + ")] IF ['o+ ).L- ] }].
The corner diffraction solution works very well for computing backscattered

fields. In [10], the authors conclude that corner diffraction can be used to ob-

tain the echo area of rather general flat plate structures. Unfortunately, since the

corner diffraction solution was found heuristically, it does have its shortcomings.

The diffracted fields it predicts may become discontinuous, particularly for some

bistatic geometries. In some instances, the angles 4' and 0' trigger a discontinuity

that the modification factors cannot entirely eliminate. These values of 4' and 4"

correspond to shadow boundaries of the GO field. In terms of the corner diffrac-

tion solution, these are false shadow boundaries, since the corner diffracted field

arises to smooth the edge diffraction shadow boundary. Nonetheless, the corner

4 diffraction solution is very useful.

Figures 8 to 10 demonstrate both the validity of the corner diffraction solution

for bistatic scattering cases and the occiirence of false shadow boundaries. Consider

a plane wave incident at 0' = 450 ' = 00 on a 2A square plate, as shown in

Figure 7. Patterns are then computed for fixed 4" and for 00 < 0 < 360'. Corner

diffraction results are shown versus moment method results, both are calculated
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in dB relative to a square wavelength. The actual computations were done by

Brinkley [11]. The subscripts on a refer to the source polarization and receiver

polarization, in that order.

In Figure 8, 0s = 0.10, which places the observer near the plane of incidence.

The nulls in the moment method results (for the G0 polarization) at e' = 90' , 270'

are from higher order effects not present in the corner diffraction solution. Agree-

ment between the two solutions is excellent. Note that there is a slight glitch in

the corner diffraction results at G- = 2250,3150 which is due to difficulties with the

modification factor, in both its mathematical expression and its numerical compu-

tation. This difficulty is most pronounced in the plane of incidence (0" = 0°). The

value of 0.1' was chosen for 0' to lessen the dependence of the displayed results

on the method of computation.

Figures 9 and 10 depict the cross-polarized and co-polarized results, respec-

tively, for 0' = 122 . The discontinuities seen in the corner diffraction solution

are due to false shadow boundaries. Agreement with moment method results has

weakened (in comparison with the case where the observer is near the plane of inci-

dence), yet the dominant scattering behavior is predicted by the corner diffraction

solution.

The diffraction mechanisms reviewed here serve as a foundation for scattering

from dielectric objects, which is the subject of the next chapter.
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CHAPTER III

DIFFRACTION FROM DIELECTRIC WEDGES AND CORNERS

3.1 Introduction

The aim of this chapter is to develop a scattering formulation, based on the

UTD, for a dielectfic corner. The reflection and transmission of plane waves at a

dielectric-dielectric interface are first reviewed. Next, two cases in which dielectric

modifications have previously been made to the UTD are discussed. These were

for the problems of edge diffraction from a two-dimensional dielectric slab (6] and

from a two-dimensional dielectric wedge [7]. By extending the method arrived at

in (7}, a modified UTD solution is developed for three-dimensional dielectric edge

and corner diffraction.

32 Reflection and Transmission at a Dielectric Interface

In this section, attention is given to a linearly polarized plane wave obliquely

incident on a planar interface between two media. Medium 1 is a non-magnetic,

lossleas dielectri'; medium 2 Is a non-magnetic and, in general, lossy dielectric.

Consider first the case of- perpendicular polarization, where the electric field

dirtctin is perpendicular to the plane of incidence (the plane formed by the inci-

dent ray and the interface normal). This is illustrated in Figure 11. The reflection

coefficient, R 1 , is defined as the ratio of the reflected electric field amplitude to tie

incident electric field amplitude. The transmission coefficient, T±, is defined as the
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Figure 11: Reflection and transmission at a dielectric interface, perpendicular
polarization.

ratio of the transmitted electric field amplitude to the incident electric field ampli-

tude. These Fresnel coefficients can be found by applying the boundary conditions

at the interface; that is, by enforcing the condition that the tangential electric and

magnetic fields be continuous at the interface, Doing so results in the following

R± = Cos0i-62/eI) -sin2i and (3.1)eosai + V/(Wej;) '- SO'''an 31

2 cos 01
=CosG'i+ (/)-n 2  (3.2)

Note that TL = 1 + R±.

Consider next the case of parallel polarization, as shown in Figure 12. The

reflection coefficient, R 1, is defined as the ratio of the reflected magnetic field

amplitude to the incident magnetic field amplitude. The transmission coefficient,
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Figure 12: Reflection and transmission at a dielectric interface, parallel

polarization.

T11, is defined as the ratio of the transmitted magnetic field amplitude to the

incident magnetic field amplitude. Enforcing boundary conditions as before, one

finds that

a11= ((2/c)cOs and (3.3)((2/1) cos 0' + (2,) i 2o
T2(f2/El) cOs 0'

((2/1) cos 0' + V(/l) - sin2 9' (3.4)

Note that T1 = 1 + R11. Since the incident and reflected fields are in the same

medium, the ratio of the reflected electric field amplitude to the incident electric

* " field amplitude is also given by R11.

For both polarizations, one finds that 9? = 0' and sin 9 = IA2sn8 i , which

are known as Snell's laws of reflection and refraction, respectively.
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This study is concerned with the Fresnel reflection coefficients, R_ and R11,

for reasons that will become apparent later. Note that R± and R11 are complex

for complex E2. Also, if 62 is real but less than el, R 1 and R11 will be complex;

however, that situation will not arise here. Complex Q2 will also result in the angle

of refraction 0t being complex. (In this instance, 6
t is clearly not the true angle

of refraction. The true angle of refraction can be found in a manner analogous

to that done by Stratton [12, pages 500-505] for the problem of refraction in a

conducting medium. This is not presently of interest.)

Using the ray-fixed coordinate system for three-dimensional reflection shown

in Figure 3 (Section 2.3), the reflected field E'(s) is written as

E (s) R 11  0 E'(QR) (3.5)

[E'L(S) j[0 R1 j[ Ei (QR)J

where Et(QR) is the field incident at a reflection point, QR, and a is the distance

along the reflected ray from QR.

Figures 13 and 14 illustrate the behavior of JR111 and IR1 versus angle of

incidence for three values of (2. Note that the complex permittivity C2 can be

written as e2 = C2 - je", where e2 represents the lossy nature of the dielectric.

When the material is lossless, 1R111 vanishes at the Brewster (or polarizing) angle.

Also, as grazing incidence is approached, both JR111 and JR.Lj approach unity.

3.3 Two-Dimensional Dielectric Slab

The first application of the UTD to a dielectric scatterer was developed by

Burnside and Burgener [6], who studied the case of a thin, lossless dielectric slab.

The geometry is illustrated in Figure 15. The dielectric slab they considered was
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Figure 15: Geometry for diffraction from a 2D semi-infinite dielectric slab.
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of any thin uniform material, but subject to the following restrictions:

a The diffractions can be assumed to emanate from the edge point QE.

* Energy leaving. QE tangential to the slab, as a surface wave or a transmission

through the endface, can be assumed negligible.

* Loss within the slab can be assumed negligible.
d

They first wrote expressions for the incident, reflected, and transmitted fields of a

semi-infinite dielectric slab (assuming unit magnitude excitation) as follows:

e-jkpi

Uinc . in regions I and II, and (3.6)
0 in region III

= R ---"------ in region I, and
7P7_ (3.7)

0 in regions II and III

and

U frn  0 in regions I and II, and

kp* in region III.

Note that the transmitted (reflected) field is written as the product of a total

transmission (reflection) coefficient and the field that would have been incident

upon the observer from the source (image) in the absence of the dielectric slab.

The coefficients Rt al and Tt" account for the multiple interactions that take

place within the slab to produce the total reflection and transmission fields, each of

which is an infinite sum of waves. This is illustrated in Figure 16. RtW and TO

are each expressed as an infinite series, with each term in the series representing

one component of the reflected or transmitted field, respectively. Rt" and Tt""I

are found by proper attention to the various phase delays and coefficients of single
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Figure 16: Multiple interactions within dielectric slab.

reflection and transmission involved. Note that plane wave propagation was as-

sumed for the field incident on the slab, the field within the slab, and the reflected

and transmitted fields. Thus, neither the source nor the observer must be too close

to the slab.

Now, an expression for the diffracted field is desired. Comparing the dielec-

tric seni-infinite slab to the perfectly-conducting case, one notes that the discon-

tinuities at the two shadow boundaries have changed. This is due to a different

reflected field, and to the presence of a transmitted field. Since the diffracted field

arises to smooth out the discontinuities at the GO shadow boundaries, and since

these discontinuities have been scaled by R t° t and 1 - T1t (as compared to

the perfectly-conducting case), one should scale the diffracted field in the same

manner. This was the approach proposed in [6]. Recall that the solution for the
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two-dimensional perfectly-conducting half-plane is given by

/u'(QE) D. e-kP (3.9)

where
4

DoV = D(O - 0') ,FD(O + 0') (3.10)
ISB term RSB term

and

D(e-jr/4 F [kLa(=-v- 0')] (3.11)

The diffraction coefficient is then scaled to [6]

Do=[(1 - TftJ)( - 01 + .oaDO (3.12)

Note that the solution given above for the conducting half-plane is a special case

of the wedge solution given in Section 2.2, found by setting the wedge angle to

zero. Also, note that for a perfect conductor one has Tj"° ' = 0, while Rtto1L = =1.
II t

Thus, the proposed dielectric solution reduces to the correct result for the perfectly-

conducting case.

The validity of this solution was verified by comparison with Moment Method

results, for the case of Figure 17. In [6], it was concluded that the results were

accurate for ps greater than a wavelength (which stems from the plane wave ap-

proximation), and for angles of incidence 0s up to 400 (and possibly 600) from

normal incidence (to avoid exciting a surface wave). Finally, the theory had made

the assumption that the thickness D was less than 1/10 of a wavelength. How-

ever, based on comparison with measurements, accurate results were obtained for

thicknesses up to 1/2 wavelength.
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Figure 17: Finite 2D dielectric slab with line source illunination.

3.4 Two-Dimensional Dielectric Wedge

In the previous section, a dielectric modification was made to the UTD en-

abling edge diffraction calculations for a two-dimensional dielectric slab. This

section considers the use of a similar modification for the more general problem

of a two-dimensional dielectric wedge. This problem has received considerable at-

tention by a number of authors. However, DeWitt[7] reports that many of the

published solutions to this problem are either very limited or too complicated to

be of practical use. Alternatively, Rawlins [8] has developed an approximate solu-

tion which can be numerically evaluated fairly easily. He derives a general integral

equation for an infinite dielectric wedge with arbitrary wedge angle and permit-

0, tivity. A Neumann series solution of the integral equation is then found through

a perturbation technique.. Rawlins takes the first term of this series and, using

asymptotic methods, finds explicit expressions for the diffracted field of a right

angle dielectric wedge under these constraints:

s The incident field is planar, with the electric field vector parallel to the edge

of the wedge.
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e One must have 1 < c,. < 2 for convergence of the Neumann series.

o The incident direction is in the quadrant opposite the wedge.

Rawlins' solution will be used later for comparison with the solution to be presented

here.

The dielectric modification to the UTD discussed now was proposed by De-

Witt [7], as an extension of the work done in the previous section. Since it is in

the UTD format, it will be numerically efficient. Furthermore, as a simple modi-

fication to the UTD, it will not have the constraints mentioned above. The first

step in this modification is to consider the effect that the dielectric material has

on the discontinuities at the shadow boundaries. It is immediately apparent that

the wedge problem is much more complex than the slab. One cannot speak of

the reflected or transmitted fields alone in that the multiple interactions which

occur within the wedge are of a more complicated nature. However, it was found

in (7] that the following method works very well. First, due to the vanishing wedge

thickness at the edge, energy will pass through the tip and tend to smooth the

discontinuity at the ISB; thus, the ISB terms in the diffracted field are considered

negligible. Second, it was chosen to modify the RSB terms by multiplying them by

the Fresnel reflection coefficient for the initial external reflection from the corre-

sponding wedge face. The final step is related to the principle of reciprocity. The

solution, as presented thus far, does not satisfy reciprocity. This is true since the

reflection coefficient depends on the angle of incidence, 04, which changes when

source and observer are interchanged. Thus, in (7], te R.± were calculated by

replacing 8' with half the angle between the incident and scatter directions. The

resulting formulation for the field diffracted from the edge of a dielectric wedge is
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inf r e-jkP
,,di D ~,,(3.13)

where ui(QE) is the field incident on the edge, and the diffraction coefficient,

Ds, is written as

___ r FrkLa (0 + )(3.14)

+ RL cot[! I] jPh[kLa-( + ')]I

The reflection coefficients, R., are given by Equations (3.1) and (3.3), respectively.
N

There is no distinction between the reflection coefficient for the o and n face terms,

since the convention used for the angle of incidence depends only on the incident

and scattered directions.

The following plots compare the UTD calculations of (7] with the solution

of Rawlins for bistatic scattering from a two-dimensional dielectric wedge. The

elcctric field vector of the incident field is parallel to the edge, the scattered field

is computed at a distance of 50 wavelengths from the edge, and the relative per-

mittivity of the wedge is equal to I.I. This value of er is chosen because Rawlins'

solution is more accurate for e,. close to one. The three figures correspond to three

incident directions, as indicated. Overall, the agreement between the two solutions

is very good. They differ most significantly along the wedge faces. Here, one would

expect Rawlins' solution to be more accurate since it uses the correct boundary

conditiots. On the other hand, the modified UTD solution may be less accurate

near the wedge faces since the presence of surface wave, was not considered. (Note

that later, when this method is extended to pyramidal absorber scattering, the

incident and scatter ddectioas never lie along a pyramidal face.)
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vgs Rawlins' solution, (Oo 45*).
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One should keep in mind that a good engineering approximation is being

sought for a very complex problem. The method proposed in [7 has proven to

work very well for the cases in which there is available a method to compare

against. This modified UTD approach will serve as the basis for the work in the

remainder of this study.

3.5 Three-Dimensional Dielectric Wedge

In this section, the dielectric modification to the UTD solution proposed in [7]

for a two-dimensional wedge will be extended to the problem of an infinite dielec-

tric wedge in three-dimensional space. The edge diffracted field of a perfectly-

conducting three-dimensional wedge, as depicted in Figure 4, may be written as

Ed(.) [AD(O - 0') + BD(O + !)]E(Q)( a(p ±.)

where

D(4 1 ') -2nV sin 3ol cot FkL+(0 i ON) (3.16)

+cot[ [ ,i-( j kLa"( 49)1
and the dyadic coefficients A and B are given by

A= - 4i- (3.17)

B = 4010- 4 . (3.18)

This may be expressed in matrix notation as

E=t( A D(O -) + B V(0 + 01)1 [IC P e- j k (3.19)

Ed($) E ,(QE) (p+)
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where A and B are matrices given by

A = (3.20)
0 -1

• .1 0
B = (3.21)

• 0 -1

The goal here is to determine the dyadic coefficients A and B that will properly

scale the D(b 0 ') terms when the wedge is dielectric. The approach is again

similar to that of [6] for the two-dimensional dielectric slab. For the moment, as-

sume that R1 and T1 represent total reflection and transmission coefficients for the
II II

dielectric wedge, respectively. The discontinuities at the reflection shadow bound-

aries will now be investigated to determine the coefficient B.. The question of field

polarizations must be taken into consideration. Recall that the field reflected from

a planar interface is most conveniently written in terms of its ray-fixed compo-

nents u±, tl , as was done in Equation (3.5). On the other hand, the diffracted

field formulation deals with the e, $' components of the incident field, and the

(3o, components of the diffracted field. To find the discontinuities in the reflected

field relative to these field polarizations, consider an incident ray reflecting off a

(planar) wedge face. The point of reflection is infinitesimally close to the edge,

so that the reflected ray is virtually along the RSB, on the lit side (as shown in

Figure 21). The ordinary plane of incidence and edge-fixed planes of incidence

and reflection are indicated in Figure 22. Define a to be the angle between the

ordinary plane of incidence and the edge-fixed plane of incidence. One can then

take the incident field expressed in its P., ' components, transform them into ,ij,

ijl components, use Equation (3.5) to find the reflected field in its fij., ii compo-

nents, and then transform this reflected field into its j,, components. Doing so,
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Figure 21: Reflection and diffraction at a three-dimensional dielectric wedge.
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one finds that the reflected field Er(s) can be written as

E'(a) R cos2 a - R sin 2 a (R1 + R) sin a cos aO 2 2(3.22)
Eo E(a) -I+ R_) sin acos a -R 1 sin2 a +R 1 cos aj

x E(QR) e- j k

'E;,(QR)

where EV(QR) is the field incident at the reflection point QR, and e is the distance

along the reflected ray from QR. This result is valid for any incident direction

which illuminates the wedge face. Since the reflected field is zero on the dark

side of the RSB, the 2 x 2 matrix in Equation (3.22) represents the discontinuities

associated with the RSB of the wedge face being considered. Thus, the scaling

coefficient for the D(O + 01) term of the diffracted field is written in matrix form

as

B [ R jcos2 a - R sin 2 a (RII + R 1.)sinacosa (3.23)

-(R 1 + R..) sin a coa a -RI1 sin 2 a + R. cos 2 a (

where the subscript indicates that the values vary with the o and n faces. The

angle a depends on the o and n faces because the two faces have different normal

vectors and thus different ordinary planes of incidence. Note that the scaling for

the o(n) face term is found when the o(n) face is illuminated, but will be used for

all incident directions (regardless of whether or not the o(n) face is illuminated).

This is of no concern. The same was done in the canonical problem of the two-

dimensional perfectly-conducting wedge, where the reflection coefficients are ±1.

0 ,. When a certain boundary does not exist, the corresponding term in the diffraction

formulation is typically negligible.

Following a similar approach, the discontinuity in the incident shadow bound-

ary (ISB) terms is found to be the difference between the field on the lit side (the
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'incident field) and the field on the shadow side (the transmitted field), which is

expressed as

.O L() it Shadow 
(3.24)

-1 + T11 cos'a + a.sin (T1 - T±) sina cosa E'(QE)

(T- n) sinna cos a -1 + T1 sin a + T cos2 a q (QB)

where E1(QE) is the field incident at QE and a is the distance from QE to the

field point. Thus, the scaling coefficient for the D(O - 4/) term of the diffracted

field is written in matrix form as

A= - + T1 cos2 a + TL sin 2 a (Tl-T-sinacosa (3.25)

(Ta- TL) sin a cos a -1 + T ,in2,, + TL cos2,,

where the subscript again indicates that the values vary with the o and n faces.

This procedure was first used in [6] for the problem of a slab in three-dimensional

space.

Using these results, and rearranging Equation (3.19) somewhat, the edge

diffracted field of a three-dimensional dielectric wedge can be written as

Ed,(a) Da Db E ) ] ' (3.26)

Dc Dd Ei,(QE) 4(P + "a)

where

Da (Rt cos 2 a - R1 sin 2 a) D(O + 4) (3.27)

+ (Rl1 cos2 a - R1 sin2 a)o Do(O + 4/)

+ ( + Tco2 a + Tsin2  ). Dn(, - 4)

+ (-14 T1 co2 a + T. sin 2 a)o Do(4i - /)
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Db = [(R 1 + Rji) sin a cos aln Dn(O + ') (3.28)

+ [(R1 + RL)sinacosa]oDo(4 + )

+ [(T;1 - Tj) sin acos alnDn( - 4k)

+ [(T,1 - T)sin acos ajo Do(O,- 4)

Dc= - [(RII + R±) sin a cos a]n Dn(O + 0') (3.29)

- [(RII + R±) sin a cos aoDo(, + e/)

+ [(T1 - T)sin acosa]nDn(O-4)

+ [(T- T sin a cos a] D,, ( - 4)

Dd (R_± cos2 a - RII sin2 a)n Dn(O +of) (3.30)

+ (R± cos2 a - R11 sin2 a)o De(O + 0')

+ (-1 + T11 sin 2 a + TL cos 2 a)n Dn(q - 4')

+ (-I + To sin2 a + T Lcos2 a)o Do(4 -4)

and

Do(0) 2,e/sino cot [, j F [k (#)J . (3.31)

Note that the parallel and perpendicular components of the incident and diffracted

field are cros-coupled. This is due to the dielectric nature of the wedge; this cross-

coupling does not exist for a perfectly-conducting wedge.

The preceding formulation is included for the sake of completeness; it aids in

visualizing the overall effect of the dielectric (more than the specialized form of

this solution that follows). Recall that R± and TL have as yet not been defined.

Since reflection is a local phenomenon at high frequencies, plane wave incidence

is assumed and Fresnel coefficients are used. The final step here will be to use

the dielectric modification of (71 discussed in the previous section. Thus, Rj. will
I

consider only the initial external reflections off the wedge faces. Also, recall that

48



the usual angle of incidence is replaced by half the angle between incident and

scattered directions in the computation of these reflection coefficients. Therefore

the distinction between the o and n faces for R1 no longer exists. (However, the

distinction between the o and n faces for a remains.) The TL are set to unity, which
It

is equivalent to considering the ISB terms negligible. With these conventions, the

edge diffracted fields of a three-dimensional dielectric wedge are given by

[~~)  D. Db HE~t,(QE) 1 _ _[a E( s I WE3 (3.32)
8 () Dc D d  Ell(WE)

where

Da = (Ri cos 2 an - R.L sin 2 an) Dn(O + 0') (3.33)

+ (RII cos ao - RL sin 2 ao) Do(O + )')

Db = (RII 4. Rj.) sin an cosan Dn(o + 0') (3.34)

+ (RII + RL)sinaocosaoDo() + O')

Dc = - (RII + RI) sin an cos an Dn(k + 0') (3.35)

- (R1 + R±)JsinaocosaoDo(O + qV)

Dd = (R± cos2 an - Rii sin2 an) Dn() + 0') (3.36)

+ (R1 coO ao - Ro sin 2 a0 ) Do(4 + 0')

aid Do(4) + 0') is given by Equation (3.31).

3.9 Dielectric Corner Diffraction

At this point, the extension to dielectric corner diffraction follows almost

intuitively. The corner diffraction solution for the perfectly conducting three-

dimensional wedge, presented in Section 2.4, is modified here just as the edge

diffraction formulation was modified in the previous section. Again, the dielectric
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conventions of [7] are used. The comer diffracted fields associated with one corner

and one edge of a finite three-dimensional dielectric wedge in the near field with

spherical wave incidence are given by

[E,(s) Ca(QE) Cb(QE) E QC) e-j/4(3

/sin c sin/oc e-jks

(cos OW - cosOc) P[kLca(v + P- - 0)-

where

Ca(QE) = (R11 cos2 an - RL sin 2 an) Cn(4 + 4') (3.38)

+ (R 1 cos2 ao - R1 sin 2 ao) Co( + 4,')

Cb(QE) = (R11 + R.) sin an cos a, Cn(4, + 4') (3.39)

+ (AI + RL)sinaocosaoCo(4, + 4)

CC(QE) = - (R11 + R_)sinancosan Cn(O, + 4/) (3.40)

- (Rj1 + R)sin aocos aoCo(O + ')

Cd(QE) = (R. cos2 an - R1 sin 2 an) C.(, + 0') (3.41)

+ (R± cos 2 ao - R1l sin 2 ao) Co(4, + 4/)

and

C o( =-,j2 /4o (3.42)
%P) l 2fV iflox

cot 7r (0 ) )P[ T( IF[ 1-
:~~ ~ 2nT t )I  kLo,,(, + Poe- #c)

This form will be used to calculate the bistatic scattering from the tip of

an absorber pyraimid. It is applied four times, once for each of the four edges

associated with the tip. The modeling of the pyramid and specifics on how this

calculation is performed are the subject of the next chapter.
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CHAPTER IV

TIP DIFFRACTION FROM PYRAMIDAL ABSORBER

4.1 Introduction

In this chapter, the modified UTD solution for dielectric corner diffraction will

be applied to an absorber pyramid. The modeling of the pyramid is considered

first, and the calculation of several variables in the solution is discussed. Results

are then shown for various monostatic and bistatic geometries.

4.2 Tip Diffraction Calculations

The pyramidal tip is treated as a corner in a three-dimensional wedge, which

has four planar surfaces and four edges intersecting at a common point. Recall

that the corner diffraction solution gives the fields associated with one corner and

one edge; thus, it must be applied to the pyramidal tip four times.

To begin, consider the conventions illustrated in Figure 23. The tip of the

pyranid is placed at the origin of a cartesian coordinate system. This will servc

as the primary coordinate system; all coordinate systems introduced later will be

defined in terms of this primary system. The pyramid is oriented so that a vector

normal to face 1 or 3 would have no 9 component, and a vector normal to face 2

or 4 would have no i component. The pyramid's shape is characterized by a

single angle, a, which is that angle between any two adjacent edges. (Note that
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Figure 24: Determination of the pyramidal wedge angle, WA.

considering the tip contribution only is equivalent to the pyramid being of infinite

extent.)

First, consider the wedge angle, WA, a variable that depends only on the

geometry of the pyramid. This angle is most easily found by means of the triangle

shown shaded in Figure 24. This triangle has two vertices at opposite corners of

the pyramid base, while its third vertex lies along one edge of the pyramid. This

third vertex is located such that the tiangle sides adjacent to it are perpendicular

to the pyramid edge, as shown. The wedge angle is the angle at this third vertex of

the triangle, as indicated. Applying the law of cosines to one face of the pyramid

yields

y b-/ 2( - cos a) (4.1)

* while the right triangle depicted oong the pyramid face yields
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c = sina .(4.2)

Applying next the law of sines to the shaded triangle yields

V -b =• (4.3)
sin WA sin 7

Substituting Equations (4.1), (4.2), and sin-y = cos(WA/2) into Equation (4.3)

then yields

2aVrl cosa asina

sin WA cos(WA/2) (4.4)

Since sin WA = 2 sin(WA/2) cos(WA/2), one finds the wedge angle to be given by

WA=2sin- ( C'os")a )

This expression is of course valid for all four edges of the pyramid.

Next, an edge-fixed coordinate system is needed for each pyramid edge. The

coordinate systems chosen are rectangular; each has an edge vector, i, directed

along the edge toward the pyramid tip, a normal vector, n', normal to the o face of

the corresponding edge, and a bi-normal vector, i', which lies along the o face and

is defined by d' = fi x e. The edge-fixed coordinate system for edge 1 is depicted

in Figure 25. Note that a new angle, 0, has been introduced, which is the angle

forned by opposite edges of the pyramid; it will be useful in determining the edge-

* fixed coordinate systems. Applying the law of cosines to each of the two triangles

inset in Figure 25 and equating the results yields

cos# = 2cosa - 1 (4.6)

Further manipulation reveals that

cos(0/2) = V , and (4.7)

sin(#/2) = Vsin(a/2) . (4.8)
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It is then clear that

e,, = cos(/12) = - , and (4.9)

el, = e1 = - 1 sin(#/2) = - sin(a/2) . (4.10)

From the symmetry present, one can immediately see that the four edge vectors

are given by

61 = -asin(a/2) - sin(Q/2) + (4.11)

e2 = ic sin(a/2) - 9 sin(a/2) + Vc a (4.12)

63 = &sin(a/2) + 9sin(a/2) + ivcEs'a , and (4.13)

e4 = -i sin(a/2) + 9 sin(a/2) + £co . (4.14)

Now, let us consider the normal vectors. Since nl is orthogonal to el and to the

o fuce of edge 1, it may be found as

S = iA + iB (4.15)

where this computation is performed numerically. Note that A,B > 0. The

remaining normal vectors, due to the symmetry involved, are given in terms of A

and B as

n2 = YA + iB (4.16)

193 = -iA+B ,and (4.17)

14 = -A + , . (4.18)

Finally, consider the bi-normal vectors. The first is written as

il -Al x il = X - 'D - iE (4.19)
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where C, D, and E are also found numerically. Note that C,D,E > 0. Again,

from the symmetry present, the remaining bi-normal vectors may be written as

!4

2 =(4.20)

e3 = -iC+^D-iE ,and (4.21)

e4 = -iD-9C-iE . (4.22)

These edge-fixed coordinate systems will be used later to determine various angles

and unit vectors.

Next, consider the illumination of the pyramid by a spherical wave emanat-

ing from a source point, S. Figure 26 illustrates the dielectric corner diffraction

geometry associated with the tip and one edge of the pyramid. The source and

observation points are in the far zone of the tip. Thus the field incident at the

tip is approximately planar. Note that source and observer are assumed to recede

into the far zone at an equal rate; that is, they are equidistant from the tip. Thus,

while the location of QE is not known, there is no ambiguity in the value of o.

The computation of 03o will be described shortly. Assume that the incident electric

field is known in terms of its 9, 4 components and its incidence angles 0', 4,1; as

shown in Figure 27. The aim is to find the scattered field in a direction specified

by the scattering angles 0$, 0,8. The i, 9, and Z components of E4 are found by a

simple transformation, while f and D5 are given by

I = - uin9'co.4- sin9sin - coaO t ,and (4.23)

b = nO'coa~t+ )sin0'sin$+cosO (4.24)

Note that the incident and scattered directions are assumed to be in the upper

(z > 0) half-space.
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Figure 27: Geometry for incident and scattered fields of a pyramid tip.

To implement the corner diffraction solution, the angles 0 and 0' must be

found for each edge. Consider the unit vector i directed toward a corner diffraction

point, Q0, as illustrated in Figure 28. From the lengths labeled, it is clear that 1

is expressed in the edge-fixed coordinate system as

I= -C' sinjl cos4,' - fialnjc sin4,' + ecosic . (4.25)

In a similar manner, one would find that

i)=b' inocco4 + itn~o4in, + co ox (4.26)

0 " From the expression given for i, one can see that the angle 4, of the nth edge is

found as

tan-  (4.27)
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II The reflection coefficients, R. and 11, are found by E quations (3. 1) and (3.3),
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respectively. Recall that the incidence angle used in these calculations is half the

angle between incident and scattered directions, and can be found by

0 = Cos- (_- b)1 (4.29)

- These reflection coefficients (R.L and R11) apply to all four edges. For the backscat-

ter case, 0'2¢ = 0.
1 The unit vectors -P, AC, , and Ao, which were defined in Section 2.4, can

now be more conveniently defined (for the rnth edge) as

= mcos O' - 4 sin O (4.30)

Pc. = & X (4.31)

= in cos m - i" sin ,and (4.32)

0oC,, = , .b (4.33)

The angles Pc and foc associated with the mth edge are found as

PC1 = cos-'(i.',R) , and (4.34)

S= cos -(b.4,,) . (4.35)

For backscatter, Poc, = " - fc,.

A good deal more effort is involved in finding the angle 0.'. Consider the

geometry illustrated in Figure 29. Rs and Ito are vectors originating at the tip

and terminating at the source and observation points, respectively. These vectors

must be of equal length, although their actual length does not matter here. Thus

one can choose ts = -1, and H1o . Line segments are drawn from the

source and observation points perpendicular to the edge extension; their lengths

are labeled Is. and to., and the points at which they intersect the edge extension
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are located by the vectors RPam and Rp , respectively. The vectors Rpm and

Rpom. can be found as

Rp, m = (Rs' m)im (4.36)

Rpom = (Ro' m)im (4.37)

while the distances lsm and tom can be found as

•La = IR.- RpmI , and (4.38)

lom = IRo- Rpo,,j 1 (4.39)

Now, consider the line segments drawn from the source and observation points

to the edge diffraction point QEm A pair of similar triangles exists, though not

coplanar, as indicated in the inset of Figure 29. Since

M M M M(4 .4 0 )
TS-M = -- T

the distance om can be written as

1smim
M Ism too (4.41)

where

till Iftp. - RpI = (Ito - Rs) evl (4.42)

The vector 11D., directed from the tip to the edge diffraction point, is then clearly

given by

RDm = Rps, + zmin (4.43)

anid the unit vector iqr is given by

I Prn- Its(4.44)
IRDO - Rs
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With IQ,,. known, /o for the mth edge can be found as

P~c&I e .m (4.45)

and, of course, Por =flo. In the case of backscatter, this reduces simply to

or = -w/2, for all edges.

Looking back to the dielectric corner diffraction solution presented in Sec-

tion 3.6, one sees that the angle a (the angle formed by the ordinary and edge-

fixed planes of incidence, not to be confused with the angle a of the pyramid) is

used repeatedly in the definition of Ca(QE), Cb(QE), Cc(QE), and Cd(QE). This

angle, although useful in visualizing the diffraction solution, will not be explicitly

used in the computation of the corner diffracted fields. Rather, the C(QE) may

be expressed as

Ca(QE) = [044+ Oft1  C.( + 0!) + 140 + 0v 90"A] Co(O + 0') (4.46)

Cb(QE) = [, R - 0,QR I]C.(O + 4P) + [ ,rO . - 00R0iiJCo(O + 0') (4.47)

CC(QE) = PO4R - CRIIC,( + 0') + [O OJtR. - 000Rtl]Co(O + 0') (4.48)

and

Cd(Q,) (2R± + JR1C. + ') + ;,% ]C,(, + /). (4.49)

0 
t

The variables 01,2,4 for the m edge are given by

0 0.° m f ",(4.50)

io

0
.. and (4.52)

o 0

4(4.53)
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The unit vector in for the mt h edge is given by

0
i ' n iMx' (4.54)

Note that in is the unit vector normal to the o or n face, respectively, of the mth

edge.

* Next, consider the distance parameters. Recall from Section 2.4 that

8,8II

L = 3 , +, 8sin2 o ,and (4.55)
.9¢5

Lc = .S .(4.56)

Sc +a

Thus, L and Lc increase without bound as source and observer move into the

far zone. For this reason, the transition functions F[kLca(7r + Poc - Oc)] and

F [kLa±(0 + 0')] can be set to unity. This is equivalent to saying that an ob-

server in the far zone will never be in the transition regions associated with the

edge diffraction shadow boundary or the GO reflection shadow boundaries, respec-

tively. (This is due to. the fact that the transition regions collapse to the shadow

boundaries in the far zone; an observer can only be in the transition region by be-

ing exactly on the shadow boundary.) On the other hand, the ratio L/Lc renains

finite and the modification factor is significant in the solution. Upon considering

Figures 26 and 29, it can be seen that L/L, dopends not on the absolute vlues of

3, SC, 3a, and ?', but on their relative values. Thus one can compute, for the ntu

edge,

sin 2 a.f( L I L ) m = : i n 3 4 .

5+J)
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Note that

S=C = IRol =1Rol (4.58)

34 = jkQEmj~RDm R.I ,and (4.59)

am = tDQB~i=Ro-RDm1 . (4.60)

For the backscatter case, this reduces to (L/Lc)m = sinflcC.

The only quantities not yet mentioned are Eh(QC) and ,(QC). These are

found simply by taking appropriate dot products.

4.3 Sample Calculations

The computations discussed in the previous section have been used to generate

the "Absorber code". In this section, the Absorber code is used to calculate the

scattering from a single pyramidal tip in various monostatic and bistatic scattering

cases. The conventions defined in Figures 23 and 27 will be referred to here. The

following figures plot the ratio of the amplitude of the scattered electric field to

that of the incident electric field. Since the observer is assumed to be in the far

zone, the 1/a term in the corner diffraction formulation is ignored.

First consider the backscatter case, depicted by the solid curve in Figure 30,

where OP = " mid 0' < 01 = 03 < 900. The incident electric field is 0 po-

larized, the frequency is 5 Gliz, and the pyrumidal absorber iA characterized by

a = 210 mid er = 1.45 - jO.58. As 0i varies, the inrident ray striking the tip

sweeps through the 0= 00 plane, which is perpendicular to face 1. As 0' increases

0 '- through 100, a small discontinuity is seen; here face 3 drops into the shadow region,

and false shadow boundaries (see Section 2.4) exist for the o face of edge 2 and

the n face of edge 3. As 0' increases through 79', the source is broadside to face

1, and a singularity is seen. Note that a singularity in these far-rone calculations
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indicates that the local field behavior is cylindrical or planar (as opposed to spher-

ical). (A singularity would not occur in a near-zone calculation, where all distance

variables are well-known, all transition functions are included in the calculation,

and the 1/s spread factor is not dropped.) In the solid curve of Figure 30, the

singularity occurs when the source (observer) is broadside to face 1. At broadside,

the observer is at the GO RSBs of face 1 and the edge diffraction SBs of edges 1

and 4. The incident field, assumed planar, produces a planar reflected field from

face 1. To smooth the discontinuity caused by the (planar) reflected field, the edge

diffracted field must behave as a planar field near the RSB, which lies along the

edge diffraction SB. Thus, the corner diffracted field must behave as a planar field

in this same (backscatter) direction in order to smooth the discontinuity in the

edge diffracted field.

The second (dashed) curve in Figure 30 is for the same case, except that

0_ = 450. At i - 00, both curves have the same value since both represent

nose-on incidence. This is also the lowest backscatter value on the plot, indicating

that the absorber performs best at nose-on incidence, as expected. In the second

case, as 0' varies, the incident ray striking the tip sweeps through the 0 = 450

plane, which contains edge 1. A discontinuity is seen at 0' = 140; here faces 3

and 4 drop into the shadow region, false shadow boundaries exist for the o face of

edge 2 and the n face of edge 4, and contributions from edge 3 are ignored since

3s, 0 > n7r. This case has a singularity at 0' = 750, where the source direction is

perpendicular to edge 1; this case has another singularity at 0' = 90', where the

source direction is perpendicular to both edges 2 and 4. In these instances, the

source (observer) is along edge diffraction SBs only. Edge diffracted rays leaving

the edge move in parallel directions to the (far zone) observer. Thus, the edge and

corner diffracted fields again do not decay as a spherical wave, and a singularity
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results in the calculations.

Note that if one were to consider a finite pyramid (by including base diffrac-

tion), these singularities would not exist. Planar GO fields woulh emanate from

finite faces, and planar edge diffracted fields would emanate from finite edges; both

would radiate at one precise angle, neither are seen in the far zone. Of course, the

tip diffracted term does not change, its singular component cancels with a like

component of the base diffracted field.

Figure 31 illustrates the effect of the pyramid angle a. The two values consid-

ered for a are 100 and 210; other parameters are indicated in the figure. Clearly

the tip diffracted fields decrease a few dB with decreasing a. Of course, for con-

stant pyramid height, smaller values of a mean more pyramids per square foot.

Changing a also affects the geometry of reflected and transmitted fields.

Next the effect of absorber permittivity is illustrated in Figure 32, wl:ere the

two curves correspond to cr = 1.45 - jO.58 and er = 1.38 - jO.2. These Valu's

correspond to medium and light doping, respectively [7]. Other parameters are

indicated in the figure. Again, the tip diffracted fields decrease a few dB with

decreasing permittivity (note that it is the imaginary part of the permittivity that

has decreased most significantly). Of course, attemptilg to use this lower doped

material throughout the pyramid to reduce the scattered fields would detract from

the nature of the absorbing material. However, tapered material could be used to

solve this problem.

The frequency under consideration has no effect upon the nature of any scat-

* ". tering plot; varying frequency can only shift the plot up or down. This results

from the pyramid being effectively of infinite extent.

A bistatically scattered field case is depicted in Figure 33, where the inci-

dent direction is specified by 0 = 45', 4i = 00 and the scattered direction by
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00 <0< 900, 4s = 1800. Again, the remaining parameters are indicated in the

figure. The first discontinuity, at about 0 = 450, is due to false shadow bound-

aries associated with the o face of edge 2 and the n face of edge 3. The second

discontinuity, at about 0' = 550, is due to false shadow boundaries associated with

the o face of edge 4 and the n face of edge 1.

One more bistatic case is illustrated in Figure 34, where 0' = 450, 4 = 00,

08 = 450, and 00 < 0s < 3600. Thus the incident direction is fixed, and the

scattered direction sweeps through a conical pattern centered on the z axis. There

are two causes for the various discontinuities, false shadow boundaries and edge

shadowing (0 or 01 not in the range from 0 to nw" for some edge). These are

specified in the figure.

While the discontinuities see .i in these plots may seem r-ither severe, one

must realize that the levels involved are extremely low, and that a very complex

phenomenon is being treated approximately. There is no desire, in the present

study, to attempt to eliminate these discontinuities. In chapter VI, comparisons

made between calculations and measurements for both a single pyramid and many

pyramids will build confidence in this scattering formulation.
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CHAPTER V

PYRAMIDAL ABSORBER SCATTERING IN A COMPACT

RANGE

5.1 Introduction

In chapter III, the formulation for dielectric corner diffraction was developed.

Chapter IV then described how to apply this formulation to a pyramidal tip,

thus generating the single pyramid bistatic scattering code (Absorber code). This

chapter investigates the scattering from the pyramidal absorber material in the

compact range chamber that occurs during normal operation of the range. The

method of calculation is discussed first, followed by sample calculations.

5.2 Method of Calculation

The scattering into the target zone of a compact range from the pyramidal

absorber which lines the ceiling, side walls, and floor of an anechoic chamber is

now considered. Figure 35 shows typical absorber scattering paths for ceiling and

floor absorber. Similar paths exist for absorber along the side walls. The analysis

is limited to tip diffraction, which is believed to be the dominant scatterer as

the incident or scatter direction moves away from nose-on incidence (7,13]. This

has been demonstrated in bistatic measurements where scattering was measured at

various angles from a wall of pyramidal absorber (7]. In any case, the Absorber code

computes only tip diffraction and will be used here to predict the total absorber
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Figure 35: Typical absorber scattering paths calculated by CHAMBER.

scattering that takes place in a chamber.

A computer program, CHAMBER, has been written to calculate the absorber

scattering in a compact range chamber. CHAMBER considers a simple rectangular

room, as depicted in Figure 36. The ceiling, side walls, and floor are lined with

pyranidal absorber. The rear wall is neglected since it would be outside the range

gate in a well-designed room. A focus-ted seni-circular parabolic reflector with a

rolled edge and a skirt illuminates the room. This is also depicted in Figure 36.

Note that the origin of a cartesian coordinate system is placed at the reflector

vertex. This is henceforth referred to as the "room coordinate system." A few

variables used in CHAMBER are shown in Figure 36, they are defined as follows:

x.tips.ceil = Room wo coordinate of tips of ceiling pyramids.

x-tips-flor = Room :' coordinate of tips of floor pyramids.
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ytips = Room y' coordinate of tips of side wall pyramids.

z-refl-max = Maximum z' coordinate of range reflector.

zaroom = Maximum z' coordinate considered in the room.

It is through these variables that one specifies the room dimensions. The user

must also specify the intended location of the target zone center, along with ab-

sorber parameters, feed and reflector parameters, and timing parameters. This is

hdescribed fully in Appendix A, which explains how to run CHAMBER.

CHAMBER begins by choosing patches along the ceiling, walls, and floor

that it will consider for its scattering calculations. The extent of tnese patches

roughly coincides with the variables described above. However, it is desirable to

have patch dimensions that are multiples of 0.5 ft. Thus, CHAMBER finds the

following variables:

x.roonai-n = Smallest multiple of -0.5 ft > x.tipe-flor.

x.roonmmax Largest multiple of 0.5 ft < x.tips.ceil.

y.roomtmin = Zero.

y.room-nax = Largest multiple of 0.5 ft < ytips.

t.rooln.miu = Smallest multiple of 0.5 ft ? z-refl..nax.

t-.rooinmax = Largest multiple of 0.5 ft e< room.

The ceiling patch is then specified by

y.rooml.lin :5 y y.roommax (5.1)

z.roosijmin : Z' 5 z-room-max, and (5.2)

XI x.tips-ceil (5.3)
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while the side wall patch is specified by

x-room-rain < z' <_ x-room-max (5.4)

z.room.min <. z' < z.room..max, and (5.5)

Y4= y.4ips (5.6)

and the floor patch is specified by

y-roomn.min 5 y' < y-room-max (5.7)

z-room.mnin < zt < z.roommax, and (5.8)

T, = x-tips-flor. (5.9)

Note that these patches cover half of the ceiling, one side wall, and half of the floor.

However, CHAMBER does effectively consider both sides of the room. Thia will

become clear shortly.

CHAMBER then divides each patch into "resolution" cells which measure

0.5' x 0.5'. Imaginary grids are set up for each patch, with grid points at the center

of each cell, as depicted in Figure 37. CHAMBER assumes that a pyranidal tip is

present at each grid point, and all calculations will be made with this imaginary tip

in mind. These calculations are then assumed valid for each of the actual pyramids

within the corresponding cell.

CHAMBER now determines the illumination at each grid point. To do this,

the Semi-Circular Compact Range Reflector Code 191 has been taken and modified

for the current problem. The result, subroutine REPL=CODE, provides CIIAM-
S"DER with the following information for each grid point:

9 The (complex) 2', e, Iand -,# components of the illuminating GO electric fied.

(This is a reflected field from the compact range reflector.)
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Figure 37: Imaginary grid along ceiling patch.

*The corresponding point of reflection on the reflector.

Note that thle Reflector code does not provide accurate phase iniformiation~ for

the fields outside the target zone, due to an approximate miethod used in finding

reflection points along the rolled edge of the reflector. (The only exception to

this is the portion of thle floor illuntinated by the skirt, where reflection points are

easily found.) However, phase information would not be used here anyway, due to

thle random nature of the tip positions. (Pyramnidal absorber typically cwliks ill

21 x 2' blocks, which are not perfectly aligned when placed in the room. Also, tile

height of individual pyramnids varies, mid pkyramids tend to bend, twist, and sag.)

CHXAMBIER does, however, use tile phase information provided to determnine the

relative polarization of the field components, which is, of Course, essential. Thtus,

at this point, CHIAMBEIR has the following information at each grid point:

so



9 The amplitude (and sign) of the xf YI, and zi components of the illuminating

electric field.

* The incident direction of the field illuminating the grid point (since the cor-

responding reflection point is known).

Next, CHAMBER must compute the scattering from each grid point to the

field test point. The choice of field test point will be addressed later when the

various options available in CHAMBER are discussed. For the moment, assume

that the test point is fixed somewhere in the target region. The Absorber code will

be used to compute the scattering from each grid point. Recall that the Absorber

code considers a pyramidal tip located at the origin of a cartesian coordinate sys-

tem, as depicted in Figure 23. This is referred to here as the "pyramidal coordinate

system". The Absorber code requires the input variables 0', qO, EI, E", 0', and 43.

These per'tain to the pyramidal coordinate system. Thus, a pyramidal coordinate

system must be located at each grid point. Note that the z axis of each pyramidal

coordinate system must be directed into the room, since this corresponds to the

pyramid being directed into the room. Sample ceiling, wall, and floor pyramid co-

ordinate systems are shown in Figure 38, along with the room coordinate system.

* .Consider a ceiling pyramnid coordinate system whose origin is at some obser-

.vatiof:pointi (grid point) of the illuminating field. The coordinates of this origin

in the room C€ordinate system may be expressed as

* (zi =(=o, o,.tzo) (5.1o)

The transformation between room coordinates (z,y', :') and ceiling pyramid co-
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ordinates (zyz is given by

- = X -- ) (5.11)

11 Yo ' ,ad (5.12)

= o * (5.13)

Let the reflcction point (on the reflector) corresponding to this grid point be ex-

i . pressed in the room coordinate system as

, ,J= (z,,z,.-r) . (5.14)

Then, this reflection point is expressed in the ceiling pyramid coordinate system

as

, -(O - -,,,O- , I X (5.15)
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Similarly, if a grid point along the wall is specified by

O fI YIZ') = (Zo, Yo, ZO) (5.16)

and its corresponding reflection point is specified by

(X ,y ,z') = (Mr,Yr, Zr) (5.17)

then the reflection point is expressed in the wall pyramid coordinate system as

(,Y,)=(Zo--Xzo -ro- )•(5.18)

The analogous result for a reflection point which corresponds to a floor grid point

is expressed in the floor pyramid coordinate system as

(W.Y)=(Yo-yr,zo-zr,-Mo+Xr) . (5.19)

Thus, every grid point is the origin of a pyramidal coordinate system, and the

reflection point corresponding to each grid point is known in terms f its (z,y, z)

coordinates in this coordinate system. These coordinates can be used to find the

angles of incidence required by the Absorber code (0', 0).

Next, the field illuminating each grid point must be expressed in the pyra-

midal coordinate system at that grid point. The amplitude (and sign) of the

illuminating electric field is known in room coordinates for every grid point; let

these (signed) amplitudes be denoted by E., Eye, and E.,. These can be expressed

in the pyramidal coordinate directions at a ceiling grid poi, L through the following

transformation

EX = -Est (5.20)

Ey = -E. .and (5.21)

Ex = -E , . (5.22)
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For a wall grid point, the transformation is given by

Er, = -Ex, (5.23)

BY = -E,, and (5.24)

E, = -Ey, (5.25)

while the transformation for a floor grid point is given by

EM = -EV, (5.26)

Ey = -E, , and (5.27)

Ez = . (5.28)

Thus, the incident field components (Es, E) required by the Absorber code can

be found for all grid points as

E' = Ezcos9'cos '+ Eycos sin4'- E5 sinG' , and (5.29)

E = -ExsinO'+EycosO' (5.30)

where Er, Ey, E2 , 9i, and 0' pertain to that grid point.

CIIAMBER finds the scattering angles (6', 4') from the room coordinates of

the grid point and field test point. CHAMBER then provides all of these variables

(Oi , Oi )', E1 E, 0-1 4)3) along with the pyramid angle, a, the pyramid relative

*perinittivity, er, and the frequency under consideration to the Absorber code (for

each grid point).

The Absorber code returns the complex x, y, and z components of the field

scattered from every grid point to the test point (with 4he l/s spreading factor

being ignored). CHAMBER uses these results, along with the distance from each

grid point to the field test point (to account for spreading), to determine the

scattered power contribution from every grid point to the izid test point. The
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contribution from each grid point is weighted by the number of pyramids in the

corresponding cell.

This explains how CHAMBER computes the power scattered from each cell

of the ceiling, wall, and floor patches to the test point. Recall, however, that these

patches lie along one side of the room, and it was stated earlier that CHAMBER

considers both sides of the room. To understand the approach used to account

for the second side of the room (y' < 0), consider Figure 39. Point F represents

the feed, while point C is an arbitrary ceiling grid point, and R is the reflection

point on the rolled edge corresponding to C. Let T be the field test point under

consideration. The two diagrams in Figure 39 correspond to two locations of the

test point; the following discussion applies to both cases.

The absorber scattering discussed thus far corresponds to the path F-R-C-T.

However, for every ceiling grid point C, there is an image point CIM from which

one must determine the power scattered to the test point. (Note that CIM has

the same of, zo coordinates as C, but the negative of the yo coordinate of C.

RIM and TIM are imaged in the same manner.) This second scattering path of

interest is F-RIM-CIM-T. Due to the symmetry present in this problem, the power

scattered to TIM via path F-R-C-TIM is identical to the power scattered to T via

path F-RIM-CIM-T. Computing the scatter via the latter path requires less of

a programming effort and less computer run time. Thus, CHAMBER computes

the scattered power contribution to test point T from ceiling point C via path

F-R-C-T, and computes the contribution to test point T from ceiling point CIM

via path F-R-C-TIM. This is done with every ceiling grid point, so that the entire

image of the ceiling patch is considered. The wall and floor patches are treated

sinilarly. (Note that when the test point moves to the room centerline, the test

point and its image merge. The scattered power from any grid point and its image
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is then the same, and need be computed only once.)

Thus, CHAMBER computes the scattered power contribution from the entire

ceiling, wall, and floor patches and their images. However, only scattered fields

arriving within a certain time window are considered. This is handled as follows.

It is assumed that the chamber operates with a narrow transmit pulse (in the

OSU range this is about 5 - 7 ns) and a relatively wide receive window (in the

OSU range this is variable, typically set to 20 ns). The target zone center, the

start and end times of the receive window, and the field test point have been

specified by the user. The time reference is the time at which a signal would

be received due to the incident plane wave scattering from a point target at the

target zone center. The signal scattered from some grid point to the specified

test point is conbidered only if that signal could then be scattered from a point

target at the test point and arrive at the feed (via the reflector) within the receive

window. This is illustrated in Figure 40. The reference time is the propagation time

along path F-RC-TZC-RC-F. Assume that the reference time is 70ns, and the

specified receive window start and end times are -10ns and +I0ns, respectively.

The scattered fields from the grid point are considered only if the propagation

time along path F-RA-G-TP-RD-F is between 60ns and 80as. Other timing

approaches are possible; this approach computes the scattered power from the

absorber which could be scattered from some feature of an extended target (at

the specified test point) and arrive within the receive window, thus corrupting the

desired return.

Next, there is the question of addition of the scattered fields froin the various

grid points. CHAMBER computes total scattered power simply by adding the

scattered power contributions from the individual pyramids. In the compact range

ceiling scatter experiment described in the next chapter, vaioas assumptions of
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field addition will be tested in the calculated curves.

Finally) note that all scattered Power calculations are nornialized to the power

of the incident plane wave in the target zone. Also, if one requests CHAMBER

to output the roomn illumnination (fromn the range reflector), then this data is first

normalized in the saine manner.

1* 5.3 Sample Calculations

In this section, CHAMBER is used to investigate the absorber performance

for a particular compact range chamnber configuration. As required by CIIAM-

BER, a focus-fed semii-circular parabolic reflector with a rolled edge and a skirt

is considered. The focal length of the reflector is 12 feet, while the radius of its

parabolic section is 11.5 feet. The rolled edge is elliptical with a major axis of

88



4 feet and a minor axis of 1 foot. The feed horn is tilted above the horizontal

by 250. The tips of the ceiling pyramids are 16.25 feet above the vertex of the

reflector (at xt = 16.25 feet). The tips of the side wall pyramids are 20 feet to

each side of the vertex of the reflector (at yl = ±20 feet). The tips of the floor

pyramids are 3.5 feet below the vertex of the reflector (at z' = -3.5 feet). The

ceiling and side wall pyramids are characterized by a = 24.5", fr = 1.45 - jO.58,

and a density of 20.25 pyramids per square foot. The floor pyramids are character-

ized by a = 25.30, er = 1.45 - jO.58, and a density of 4 pyramids per square foot.

Note that the height of the skirt is not specified, but it is assumed to extend below

the tips of the floor pyramids. The target zone center is specified to be on the

room centerline, 6 feet above the reflector vertex, - -124 feet downrange from the

vertex. In the room coordinate system, this is (z', y, Z') = (6,0,24). The relative

start and end times of the receive window are -10 ns and +10 ns, respectively.

The chamber is assumed to operate with a vertically-polarized plane wave in the

target region, This is input to CHAMBER by specifying the appropriate electric

and magnetic dipoles to simulate the feed (see appendix A).

Now, consider a test point coincident with the target tone center; that is,

at (z, I) = (6,0,24) ft. Figure 41 displays the total scattered power versus

frequency at this test point. Also shown is the scattered power fron the ceiling

and floor (scattered power from the side walls does not arrive during the specified

time window). Clearly, the floor is the doninant scatterer for this situation.

Figures 42, 43, and 44 display the variation of scattered power versus test point

" z' 0/, and zi coordinate, respectively. In all three figures, the frequency is fixed

at 10 Glz. in Figure 42, the test point moves upward from (z',y), (2,0,24)

to (10,0,24) ft. The floor scatter is dominant when the test pxint is close to the

floor, while the ceiling scatter dominates when the test point nears the ceiling.
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Owing to the nature of the Absorber code, some floor pyramids yield the sma!',

jumps present in the range 2 < xf < 4 ft. In Figure 43, the test point moves

across the room from (r',y',z') = (6,-5,24) to (6,5,24) ft. Clearly, the floor

dominates throughout this range. Finally, in Figure 44, the test point moves

downrange from (:',yI,z') = (6,0,20) to (6,0,28) ft. Again, the floor is the major

contrilutor to the absorber scattered power. Note that increased resolution is

* provided in the range 20 < z' < 21 ft. The singularity at 20.3 feet results from

Absorber code calculations of some floor pyramids. Recall that the Absorber code

is designed for far-zone calculaLions, and thus sets the transition functions to unity

(see Section 4.2).

Now, let us fix the frequency at 10 Gliz and the test point at the target

zone center; that is, at (#IY#,Z') = (6,0,24) ft. Figures 45, 46, and 47 show the

absorber illumination as a function of position along the ceiling, side wall and floor,

respectively. Only half of the ceiling, one side wall, and half of the floor is shown,

since the illunination is synmmetric about the room centerline. To understand

the discontinuities present in these figures, one must realize that the compact

range reflector has four unique sections. Obviously, there is the parabolic section

which produces the plane wave in the target region. The skirt is a cylindrical

region (independent of the ;" coordinate) whose y', :1 behavior n:atches that of

the parabolic section at z' 0. The rolled edge consists of two regions; a rolled

edge on the parabolic section (which is 09-independent, as is the paralblic section),

and i rolled edge on the skirt (which is z-independent). Figure 45 shows that the

ceiling illumnination is most intense along the room centerline just in front of the

reflector. This portion of the ceiling is very close to the reflector, so that not

much spreading occurs after reflection. There are no discontinuities in this plot
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93



c20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0o

. 6DC
4) Q

0 Total Absorbs: Scatter

(d ) C0

~0 - / 9

C Floor Absorber Scatter -'

0 6 Ceiling Absorber Scatter N
C-I

LWll Absorber Scatter

I 20.0 21,0 22.0 23.0 24.0 25.0 26.0 27.0 28,'

ROOM Z' COORDINATE (ft)

Figure 44: Absorber scattered power vs. test point zt coordinate. Frequency
10 GHz. (z' = 6 ft, yl = 0).

94



since all reflection takes place on the rolled edge of the parabolic section. On

the other hand, Figure 46 does have a discontinuity at z' = 0. This results from

the reflection point having moved from the rolled edge of the skirt to the rolled

edge of the parabolic section, thus causing a sudden change in the spread factor

of the illuminating field. In Figure 47, the discontinuity at y' = 11.5 feet is due to

the reflection point having moved from the skirt to the skirt rolled edge. Clearly,

the floor is strongly illuminated by the skirt. The absorber scattering to the test

point from the ceiling and floor is depicted in Figures 48 and 49, respectively. The

* absorber scatter is symmetric about the room centerline, because the test point is

on the room centerline. Thus, only half of the floor and ceiling is considered Now,

one can see that the receive window limits the portion of the ceiling and floor. that

contribute to the total absorber scatter. In fact, a plot of absorber scatter from the

side wall is not included since none arrives during the specified time window. The

floor scatter shows a discontinuity at 9/ = 11.5 feet, due to the discontinuity in the

illumination there. These absorber scatter plots show both smooth trends in the

data and some abrupt changes. This is due largely to the Absorber code, which

predicts such behavior as pyramidal incident and scatter angles vary. Finally, note

that CHAMBER calculates the total absorber from the ceiling and floor to be

-67.8 and -55.8 dB, respectively.
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Now, consider a configuration identical to the previous one, except that the

yI coordinate of the test point is equal to 5 feet. The test point is thus given in

room coordinates as (z, y, zt ') = (6, 5, 24) ft. Figures 50 and 51 show the absorber

scatter to this test point from the two sides of the ceiling. Figures 52 and 53 show

the absorber scatter to this test point from the two sides of the floor. Again, the

side walls do not contribute due to the receive window. These plots do, in general,

appear as one would expect after having seen the results for the previous case.

However, the lower scatter level at roughly 4 < z' < 12 ft, 3 _ y' < 7 ft was not

expected. The cause was found to be due to the pyramidal scattering angle 0b,

which slowly passes through 2700 in this region. Edge shadowing and RSB effects

cause the Absorber code to predict a decreased scattering level near 0. = 2700.

Finally, note that CHAMBER now calculates the total absorber scatter from the

ceiling and floor to be -67.2 and -56.0 dB, respectively.

Some conclusions may be drawn at this point. As mentioned earlier, the floor

proved to be the dominant scatterer for the chamber configuration considered

here. Also, it was seen that the walls were effectively time-gated out in all the

cases considered. In Figure 44, the absorber scatter is seen to be fairly constant

in the range 20 _< z' < 28 feet. (Although not shown here, if one were to consider

lower values of z, the absorber scatter would be seen to increase as z' decreases.)

Most importantly, note that the absorber scatter levels predicted here are mud

lower than typical levels of diffraction from the range reflector itself, which are

about -30 dB for present designs (13].
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CHAPTER VI

EXPERIMENTAL VERIFICATION OF PYRAMIDAL ABSORBER

SCATTERING CALCULATIONS

6.1 Introduction

In this chapter, absorber scattering calculations are verified through compar-

ison with experimental results. Calculations are first compared with backscatter

measurements of a single pyramid. Various assumptions on the addition of pyra-

midal fields are then discussed; these will apply to experiments in which many

pyramids contribute to the total scatter. Calculations are then compared against

measurements from an experiment in which a large number of pyramids were scat-

tering under the same bistatic situation. Finally, calculations are compared against

experimental data in which the bistatic scattering from pyramidal absorber on the

ceiling of the OSU compact range was measured.

6.2 Backscatter from a Single Absorber Pyramid

*Backscatter measurements of a single pyramid have been made with the OSU

compact range using the absorber sample depicted in Figure 54. The rear-facing

pyramid served as a second available target, and as a means of balance. Frequency

'1 .scans were made from 2 to 18 GHz, in 10 MHz increments, for three orientations.

Two cases are presented here; these are 0 = 0, 8 = 0* and 0 = 0', 0 = 45 . The

bandlimited impulse response was calculated for the two cases, these are shown
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Figure 54: Absorber sample used for single pyranid backscattet measurements.
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Figure 55: Bandlimited impulse response of single pyramid; = 00, = 00.

in Figures 55 and 56, respectively. The expected arrival time of the tip return

(-4.4 and -3.1 no for 0 = 0' and 450, respectively) is indicated, along with other

scattering centers. (Note that these measurerw'nts do not show the relative levels

of the tip and base return fiom a wall of pyramidal absorber, since the geometry

of a pyramid isolated in space is entirely different from that of a wall of pyramidal

absorber.) The tip return is larger at 8 = 450 than at 0 = 00, which was predicted

in Figure 30.

While Figures 55 and 56 do show that the tip response begins at the expected

time, it is difficult to tell when it ends. For this reason, the impulse response

data was processed further. To emphasize signal and deemphasize noise, the data

was squared and then smoothed with a moving 1lanning window. The results

are presented in Figures 57a and 58a, where the time scale is now from -5 to

-2 ns. The expected time of the tip response is again indicated in the figures.
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Figure 56: Bandlimited impulse response of single pyramid; 0 = 0', a 45' .

(Note that in Figure 58a, the tip response appears centered at -2.9 ns, which

corresponds to 9 48*. This deviation is assumed to be due to the method used

for target alignment, which was believed accurate to within only a few degrees.

Of course, a small angular error would noticeably affect the tip response time for

a = 45* , but not for 0 = 0'.) Now, one can visually isolate the tip return and

choose appropriate time gate parameters. This has been done using a Kaiser-Bessel

window; Figures 57b and 58b shou the gated waveforms.

These plots of energy temporal density were considered solely to find ap-

propriate time gate parameters. Going back to our calibrated frequency domain

measurements, one can perform an inverse Fourier transform (where, of course,

the frequency domain data is not windowed before the IFT), and apply the proper

time gate parameters to the two time domain signals. Finally, an FFT generates

the tip response in the frequency domain which is plotted against calculations in
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Figure 59: Calculated vs. measured backscatter from a single pyramid;0 = 0*.

Figures 59 and 60 for 0 = 0* and 0 = 45*, respectively. In each figure, vertical

dashed lines indicate the range of valid experimental data, due to the processing

performed. The measurements show that the scattered signal level of the tip is

roughly that predicted by theory. Better agreement can not be expected, since

the very narrow time gates used limit the frequency resolution; in addition, the

tip return is a very weak .signal being measured in the presence of much stronger,

signals.

6.3 Comments on Addition of Pyramidal Fields and Effective RCS

Up to this point, the questions of how the fielda from a large number of pyra-

mids add to produce a total field, or of how an "effective RCS" should be defined

have not arisen. In Chapter V, it was decided to treat the pyramidal absorber in the
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Figure 60: Calculated vs. measured backscatter from a single pyramid; )0',

chamber as an incoherent scatterer. Thus, the values of power found from various

grid -points were simply summed (and normalized) to produce the total scattered

power, In. the _previous section, the true R.CS of a single absorber pyramid was

measured;, thus, the corresponding calculations were straightforward. However,

the experiments described in the following two sections involve the scatteri-aig frc'n

a large number-of absorber pyramids. Neithbir is a true RCS ax.-asuremlent. Both

iAnvolve the question of how the fields of individual pyramids add to produce the

total field. V~or these reasons, the topics of pyrarnidal'field addition andI effective

RCS will be dioiussed now...

First, let up consider a few casee, in which N pyrami'd5 arm each illuminated by

the sant feld WW, and each scatters the sauxe field jt'P $cut oe bsrat

point. Let. the total scattered field be denoted by Et'14t. An "effective K'S"'
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aeff, is then defined as

0 eff =l0log (4T2 IEl (6.1)

where r is the distance from the tips to the observation point. If one assumes that

the N fields Etp scat add in phase to produce Etotl scI, that is

Etotal scat = NEtip scat (6.2)

then it follows that
- %f = 1log 7rr2Etip scat2

O'ef = 10 log (4 "rr2 E 1) +2 0 logN . (6.3)

On the other hand, if one assumes that the N fields Etip scat add in power to

produce Et t G "ct, that is

iEtota s = N IEtP8catI2  (6.4)

then it follows that

aeff = 10 log (4r 2Eti scat) + 10logN (6.5)

Note that the assumption of field addition affects only the log N term. One may

want to base the assumption of field addition on an actual measurement of pyra-

mid tip position. In [7), the height of each pyramid on an absorber block of 36

pyramids was measured. Deviations as much as 1 cm were observed. Using these

measurements, and assuming nose-on plIe wave incidence, one can find the rel-

ative phase -of the:tip scattered fields. The magnitude of the sum field, S., was

then computed as follows 171
36
• , S =. -j2  " '(6.6

Sr-6
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FREQUENCY IGHZ)

Figure 61: Magnitude (Sr) of sum of fields from an absorber block vs.
frequency (7].

where di is the height of the i h pyramid, k is the wavenumber of free space, and

each pyramidal scattered field has a magnitude of unity. The results (from one

block) are shown in Figure 61, which plots the magnitude of the sum field, Sr,

versus frequency. Phase addition corresponds to the total field being 36 times the

field of a single pyramid (Sr = 36), while power addition corresponds to the total

field being 6 times the field of a single pyramid (Sr = 6). At the lower frequencies,

the curve approaches a value of 36, as tip height deviation becomes a negligible

fraction of a wavelength. Now, this dats will be used to appropriately modify the

log N term of Equation (6.3). A normalization constant is needed, since the data

in Figure 61 was found for a block of 36 pyramids. The resulting expression for

effective scattering is given by
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Ge!! = 10log (4rr2l E a 2) + 20 og log N . (6.7)

(This discussion simply serves as an example. If one were to take this approach,

tip position measurements of the material in question should be made.)

Now, let us consider several blocks of absorber. Again, assume that each

pyramid is illuminated by the same field E', and that each scatters the same field,

Etip s cat, to some observation point. The total scattered field produced by these

pyramidal fields is again denoted by Etot) "cat. Since absorber blocks tend to be

misaligned relative to each other, it is assumed that the total fields of the absorber

blocks add in power with each other. However, on the matter of the addition of

pyramidal fields within each block, three assumptions are made:

1. Addition in power.

2. Addition in phase.

3. Addition according to tip height measurements.

Thus, consider M blocks of absorber, each with N pyramids. Under the first

assumption, one finds that

aeff = 10 log (4r2 IEtipsca 2) + 10log(MN) (6.8)

while under the second assumption

= 10 log (41rr2 IEtcat 2) + 10log(MN 2 ) (6.9)

and under the third assumption

ff = 10 lo (S + 10log M . (6.10)
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Note that Equations (6.8) and (6.9) are special cases of Equation (6.10).

Before leaving this topic, Equation (6.10) will be rewritten for the more general

case in which the number of pyramids may vary from block to block. Thus, for

M blocks of absorber, each with Ni pyramids, the effective RCS (under our third

assumption) is written as

reff = Olog 4wr2 Et PC + 10log ( N1 i. (6.11).dre f = 1 Ei /\1/

This equation applies to the experiment in the next section.

Note that a major restriction to all of the cases considered in this section was

that of the incident and scattered fields being the same for all pyramids. In an

experiment which measures the absorber scattering in a compact range chamber,

this will clearly not be the case. When one is interested in computing the absorber

scatter to a specific test point (as was done in CHAMBER), the &t~ al scat i2 term

in Equation (6.1) can be taken to represent the total scattered power. However,

since each pyramid is illuminated differently, there is no obvious interpretation of

the IE'l9 term. Fortunately, one does not encounter this difficulty in CHAMBER,

since only the scattered power computations are examined. However, the calcula-

tions in Section 6.5 force one to consider again the notion of an effective RCS. This

results from the nature of the experiment considered in that section, however, and

is best explained there.

(6.4 Bistatic Scattering from a Wall of Pyramidal Absorber

In IT], an experiment is described in which two 3' diameter parabolic dish

antennas were used to measure the bistatic scattering from a wall of pyramidal

absorber. The wall absorber consisted of 8" tall pyramids. The two antennas had

broadband TEM horn feeds at their focil. The transmitter produced a vertically-
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polarized electric field. The experimental setup is depicted in Figure 62. The

transmitting antenna was positioned at an angle of 450 relative to the wall, while

the receiver was positioned at a variety of angles. It was assumed that the wall

was in the near field of both antennas. Thus, an elliptical region (of about 10

sq ft) of the wall is assumed to be illuminated by a plane wave. The receiver

location specified by 0' = 450 is of most interest. At this angle, all illuminated

pyramids have (ideally) identical incidence and scattering angles, and identical

phase paths from the transmitting horn to the receiving horn. Thus, depending on

how much variation exists in tip positions, one may expect the scattered fields of

the pyramids within each absorber block to add in power, in phase, or somewhere

in between. (Of course, the pyramid fields could interfere with one another and

produce a total field less than that predicted by an adding in power calculation.

This behavior would produce nulls at certain frequencies. However, the power

addition is considered the lower limit in our calculations.)

Since each absorber block on the wall measures 2' x 2', a different number of

pyramids are illuminated on each of a few absorber blocks. The three assumptions

of field addition from Section 6.3 will be used for pyramid fields within each ab-

sorber block, while the total scattered fields of the various blocks are assumed to

add in power.

Figure 63 shows the bandlimnited impulse response for the wall scatter. The

location of the expected time of the tip and base returns is indicated. Next,

Figure 64 shows the corresponding frequency domain data. The measured data is

taken from [7], while the calculations were made using the Absorber code developed

here. Equation (6.11) is used to find the three calculated curves; this is done by

specifying Sr = 6 for power addition, Sr = 36 for phase addition, and using St(f)

from Figure 61 for addition according to tip height deviation (assumption 3). The
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Figure 63: Bandlimited impulse response of wall scatter measurement (7].

third assumption agrees best with the measured data. Note that the measurements

include both tip and base response. Although tip diffraction calculations are being

plotted against measurements of both tip and base return, recall that the tip return

is believed to be the dominant scatterer. Figure 63 supports this contention.

0.5 Ceiling Absorber Scattering in a Compact Range Chamber

The absorber scattering from a portion of the ceiling of the OSU compact

range has been measured by means of a large flat plate placed in the target zone.
This work was the effort of Young and Clerici and is described in (14j, The plate

measures 6' x 6' and can be rotated in azimuth and elevation. The experimental

"" setup is depicted in Figure 65. As indicated in the figure, the plate is assumed to

optically reflect the incident plante wave up toward the ceiling. (This represents

an extreme case of absorber iliumination in that the ceiling absorber just above
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experiment (experimental data from (7)).

117



ROLLED
EDGE

FARAOLIC
REFLECTOR

. ..... . ..................... .... .: .... ... .<... ..

.PLAT (Drawing not

to scale.)

.... .. .. .. . ..... ....... .. .

VERTEX

Y( Z I

SKIRT

Figure 65: Experimental setup used for Plate measurements.

the reflector is illuminated by the incident plane wave.) The ceiling pyramids

then scatter in all directions. Some of the scattered energy will strike the rolled

edge and be reflected back to the feed. This is the absorber scatter signal under

consideration.

The experiment considered here used a plate azimuth angle of 00, and a plate

elevation angle of 730 . This corresponds to a patch of ceiling 6 feet wide and 6.3

feet downrange. (The patch is actually 10.3 feet in extent downrange, but the last

4 feet are lined with wedge absorber material. The wedge material is not believed

to scatter significantly in the direction that would affect this experiment.)

Note that during calibration, the range normally computes the following

02
o = 0 log 4,,. (6.12

I F,, 12)~z2

wi .re E' represents the incident plane wave and EO is the scattered field from
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some target in the target zone. In this experiment, the range will receive and

process our ceiling absorber signal as though it had originated from a target in the

target zone. Thus, when the ceiling absorber signal is properly time-gated, the

range computes

Oi°ceil = 10 log (47rr2 E cei l s cat  (613

where E again represents the incident plane wave, and IEc"a scat12 represents the

total scattered power of the ceiling absorber signal.

Figures 66a and 67a show the bandlimited impulse response for the cases of

vertical and horizontal polarization, respectively. The absorber response, based

on timing calculations, is indicated. A Kaiser-Bessel window was then applied

in each case, Figures 66b and 67b show the gated impulse response for the two

cases. Next, an FFT was performed. Figure 68 shows the resulting absorber

response in the frequency domain, along with three calculated curves. In these

three cases, aeij is calculated via Equation (6.13), where IE"e ctj2 is found

under three assumptions of field addition. The lowest of the calculated curves was

found assuming the fields from all tips added in power. The middle curve was

calculated assuming the fields from tips within one square foot sections added in

phase, while fields among sections added in power. The upper curve was calculated

assuning the fields from tips within four square foot sections added in phase, while

fields among sections added in power. The results are very satisfying, since they

roughly predict the scattering level from the ceiling patch, and since they follow

the frequency behavior of the measurements as well.

(Note that, by reciprocity, equivalent scattering paths exist which are theIreverse of those shown in Figure 65. These were the paths actually considered
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when the ceiling scatter calculations were made. This was done by a computer

code similar to CHAMBER.)

1
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Figure 68: Calculations vs. measurements of ceiling absorber scatter (acil).

123



CHAPTER VII

SUMMARY AND CONCLUSIONS

A high frequency diffraction solution for the scattered fields from a pyramidal

absorber tip has been developed in this study. This solution is based on the

perfectly-conducting UTD corner diffraction solution, which was modified to treat

the case of a corner in a dielectric three-dimensional wedge. The modification

is modeled after that done in (71 for the two-dimensional dielectric wedge. The

resulting formulation was then used to generate a computer code for the calculation

of bistatic scattering from an absorber pyramid. The validity of this result has been

verified by comparisons with backscatter measurements of an isolated pyramidal

absorber tip. Note that the tip term was extracted. from the measured result

by transforming the frequency domain data to the time domain and gating out

the appropriate term. The calculated and measured results don't overlay, but

have similar levels. One should not expect perfect egreerment in that dielectric

materials have many potential error terms, such as variation of dielectric properties

with frequency and position. Also, the tip term is a very small signal which waI

measured in the presence of much larger signals. Nevertheless, the measured results

do tend to verify the theoretical solution.

The validity of the absorber scattering code ww also verified by comparisons

with bistatic measurements of an absorber wall. This displayed excellent agreement

between calculation and measurements. The calculations made under the assump.
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tions of power and phase addition (of fields from individual pyramids) bounded

the measured data well. The calculated curve which computed pyramidal field ad-

dition based on tip height measurements agreed with both the level and frequency

dependence of the measured data.

The pyramidal absorber tip solution was then used to develop an anechoic

chamber analysis for compact range applications. This computer code, CHAM-

BER, determines the total field scattered into the test zone by the absorber lining

the chamber walls, ceiling, and floor. (Note that CHAMBER obtains the illumi-

nation of the absorber from a reflector analysis code which treats a semi-circular

reflector with a rolled edge and a skirt.)

A specialized version of CHAMBER was used to compute absorber scatter

from the ceiling of the Ohio State University compact range chamber. Compar-

isons of these calculations against: measurements from the plate experiment of

Chapter VI illustrate the accuracy-of our predictions,

CHAMBER has been- used to analyze the Ohio State University compact

range chamber. The analysis showed that :the dominant scattering came from

the absorber on the floor, which was strongly illuminated by the skirt. The wall

absorber scattering did not arrive within the specified receive window, for cases

.where the test point was along the room centerline. One should note that the

fall time and isolation of the' receive window deserve careful attention, since the

scattered power (into the target zone).from the floor and ceiling absorber increases

as the scatter point nears the back of the room. (This can be seen by running

CHAMBER with the duration of the receive window extended.) Most significantly,

though, the absorber scatter levels predicted here are much lower than typical levels

of diffraction from the rae reflectoritself, which are about -30 dB (relative to

the incident plane wave) for present designs.
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With this code, one can predict the pyramidal absorber performance of a

compact range chamber btiore it is constructed. In fact, the various hot spots

within the room can be identified so that appropriate action can be taken.
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APPENDIX A
a

PROGRAM CHAMBER

A.1 Introduction

This appendix begins with a description of files required to compile, link, and

run program CHAMBER. The reader is then stepped through the operation of

CHAMBER, and the output generated is described. Finally, some possible error

messages will be discussed.

A.2 Software Requirements

The FORTRAN code for program CHAMBER is separated into two files,

CHAMBER.FOR and CH.DECL.FOR. The former contains the bulk of the code;

namely, the main program and subroutines. The latter simply maintains the

variable declaration statements and common blocks. CHAMBER.FOR inserts

CH.DECL.FOR wherever necessary with the "include" command. Thus, the file

CH.DECL.FOR must be present when compiling CHAMBER.FOR.

CHAMBER also uses the following subroutines: GEOMETRY, BISTATIC,

REFL-CODE, and PLOTTER. Subroutines GEOMETRY and BISTATIC make

up what has previously been referred to as the Absorber code. Given a specified

pyramid angle, a, subroutine GEOMETRY computes the pyramid wedge angle,

edge-fixed coordinate systems, and so on. It passes this information to subroutine

BISTATIC, which can then make repeated scattering computations. Of course,
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this is transparent to the user of CHAMBER. These subroutines are both in file

TIPBIST.FOR. Next, subroutine REFLCODE is the modified version of the Semi-

Circular Compact Range Reflector Code [9] that has been mentioned earlier. The

modifications primarily consist of conversion from a program to a subroutine, and

the elimination of all but the GO field. Also, the coordinates of every observa-

tion point and corresponding reflection point on the reflector have been added

to the output. Again, this is transparent to the user. File REF3DT-SUB con-

tains subroutine REFLCODE. Subroutine PLOTTER creates the plots output

by CHAMBER, and is in a file by the same name.

Finally, when running CHAMBER, two data files must be present. These

are CH-INPUT.DAT and FOR017.DAT. The former holds the input data that

will be used in the run of CHAMBER. To specify the input, one must edit this

file. This is more convenient than entering the input interactively, especially for

multiple runs where only a few variables change. File FOR017.DAT contains the

cross-section information of the semi-circular reflector, which is used by subroutine

REFL.CODE. File FOR017.DAT is created by program SURFACE, which in

turn requires file FOR07O.DAT as input. (Note that some data specified in file

FOR07O.DAT must later be input directly to the reflector code; thus, one must be

careful to be consistent.) The reader is referred to [9] for a more complete discussion

of this material; however, the FOR07O.DAT file that created the FOR017.DAT file

used in the sample calculations of Chapter V is as follows:

1.
12.

11.
0.
1

180.

4.1
0.08
0

16.
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Figure 69: Range reflector cross-section (y' = 0), skirt not shown.

179.6
0. ,00

Figure 69 is a plot of the data in FOR017.DAT; note that this represents a parabolic

reflector 11.5' high with a 4' x 11 elliptic rolled edge attached at the top.

lit summary, the following steps are required to execute program CHAMBER:

1. Compilation of CHAMBER

Files required: chaniber.for, ch-decl.for

(V.4X) Coinnmnd : fortran chamber

~2. Linking of CHAMBER

Files required: chamber.obj, tipbieit.obj, ref3dt-sub.obj, plotter.obj
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(VAX) Command : link chamber, tipbist, ref3dt-sub, plotter

3. Running of CHAMBER

Files required: chamber.exe, ch-input.dat, forOl7.dat
£

(VAX) Command : run chamber

With the executable file, CHAMBER.EXE, one can begin with step 3.

Note that some options of CHAMBER automatically call PLOTTER to plot

various output data. This output data is also saved in output files. One may not

want CHAMBER to plot the results. Also, PLOTTER is likely to be incompatible

with systems other than that which it was written on. In either case, the calls

to subroutine PLOTTER can easily be removed from CHAMBER, and no results

will be lost.

A.3 Operation of CHAMBER

In this section, the reader is brought step-by-step through a run of CHAM-

BER. The CHJNPUT.DAT file that was used in this run, along with a description

of each input variable, is as follows (note that all linear dimensions are in feet):

10.26 z' coordinate of tips of ceiling pyramids.
-3.6 i' coordinate of tips of floor pyramids.

20 y' coordinate of tips of side wall pyramids.

40 NaxiMum z' coordinate of interest in the room.

6 z' coordinate of target zone center.
24 z' coordinate of target zone center.

24.6 Pyramidal angle (alpha) - ceiling pyrazids.
20.26 lumber of pyramids per square foot (ceiling).
1.46 Real part of pyramid relative permittivity (ceiling).
-0.88 Itag part of pyramid relative permittivity (ceiling).
24.6 Pyramidal angle (alpha) - wall pyramids.
20.26 lumber of pyramids per square foot (wall).

1.46 Real part of pyramid relative permittivity (wall).
-0.68 Zeag part of pyramid relative permittivity (wall).
26.3 Pyramidal angle (alpha) - floor pyramids.
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4 Number of pyramids per square foot (floor).

1.46 Real part of pyramid relative permittivity (floor).

-0.68 Imag part of pyramid relative permittivity (floor).

12 Focal length of reflector.

11.5 Radius of parabolic section of reflector.

1 Simulated (1) or Measured (0) Fed

0 Magnetic dipole, Xf direction.

1 Magnetic dipole, Yf direction.

I Electric dipole, Xf direction.

0 Electric dipole, Yf direction.

25 Tilt angle of feed horn (above horizontal).

-10 Start of receive window (relative to time reference).

10 End of receive window (relative to time reference).

Most of these are self-explanatory, and have also been mentioned in Chapter V.

Note that the reflector is specified as having a simulated feed. The following four

parameters, described as magnetic and electric dipoles, are used to simulate the

feed. Details on this are provided in (9]. The dipoles chosen here (0, 1, 1, 0) specify

vertical polarization, while (1,0, 0, - 1) specify horizontal polarization.

The run begins with the command "run chamber". CHAMBER first reads

tht reflector cross-section data from FOR017.DAT, and finds the maximum ml and

zI extent of the reflector. These two values are then displayed, along with resulting

finitations on tip position coordinates, as follows:

Physical limits of reflector:

Maximum x coordinate of reflector ............ c 16.6 (ft)

Maximum z coordinate of reflector ............ a 3.8 (ft)

Minimum allowable x coord of ceiling tip*.... = 15.7 (ft)

Minimum allowable y coord of side wall tip&.. = 16.? (ft)

Continue (t/f) ? T
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Once this has been read, and appears correct, the user types 't' for the program to

continue. CHAMBER then begins reading from file CHJNPUT.DAT. The room
parameters are then displayed, along with information on the resulting ceiling,

wall, and floor patches, as follows:

Room parameters:

X coordinate of tips of ceiling pyramids.... = 16.25 (it)

X coordinate of tips of floor pyramids ...... = -3.60 (it)
Y coordinate of tips of side wall pyramids.. = 20.00 (it)

Maximum Z coordinate of interest ............ = 40.00 (it)

The patch considered along the ceiling is specified by:

Y ranging from 0.00 to 20.00 (ft)

Z raning from 4.00 to 40.00 (it) and X = 16.25 (it).

The patch considered along the wall is specified by:
X ranging from -3.50 to 16.00 (it)
Z ranging from 4.00 to 40.00 (it) and Y = 20.00 (ft).

The patch considered along the floor is specified by:

Y ranging from 0.00 to 20.00 (It)
Z ranging from 4.00 to 40.00 (it) and I c -3.60 (it).

Continue t/1) ? T

Again the user may verify the data and type 't' for CHAMBER to continue. The

target zone center coordinates are then displayed:

Target Zone Center Coordinates:

4S

I = 0.00 (it)
7 = 0.00 (it)

24.00 (it)

Continue 4t/) ? T

132



Next, the absorber pyramid parameters are displayed:

Pyramidal absorber parameters (ceiling):

Pyramid angle (alpha)............. = 24.60 (degrees)

lumber of pyramids per sq It ......... 20.25
Relative permittivity of pyramid.. = 1.45 j 0.58

Pyramidal absorber parameters (side wall):

Pyramid angle (alpha) ............... 24.50 (degrees)

lumber of pyramids per sq ft ....... = 20.25
Relative permittivity of pyramid.. =1.45 - j 0.58

Pyramidal absorber parameters (floor):

Pyramid angle (alpha).............. m26.30 (degrees)
Number of pyramids per sq ft ....... = 4.00

Relative permittivity of pyramid.. m1.46 - j 0.58

Continue (t/1) I T

Note that pyramidal parameters may be specified separately for the ceiling, wall,

and floor pyramids. The input data ends with the reflector/feed and time gate

parameters, as shown below.-

Reflector/Feed paramewte:

Focal length o~f reflector........... a 12.00 (f10
Radius of parabolic section ......... a 11.60 (ft)
Simulated (1) or Measured (0) foed.. e I

*Napstic dipole (M)................. M0.00

Kagnetic dipole (Yf)................. a1.00
Electric dipole (Mf)............... a 1.00
Electric dipole (Yf) ............... a 0.00
Tilt &Wge of feed ................. a 26.00 (degrees)
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Time gate parameters:

Beginning of time gate .... = -10.0 (ns)

End of tims gate .......... = 10.0 (na)

Continue (t/f) ? T

Note that all of the above data has been written to an output file, CH.LOG.DAT,

which serves as a log of the entire run.

CHAMBER now computes the plane wave power incident at the target zone

center, which will later be used for normalization of all power computations. The

round-trip time from feed to target zone center (via reflector) is also computed.

As a small check, CHAMBER computes the plane wave power incident at a point

2 feet away from the target zone center, which should be close to the plane wave

power 41 the target zone center. At this time, CHAMBER displays the following:

Computing power reference (plans wave power) and time
reference (round trip time from feed to target zone center).

Note: Power at point 2 feet away from specified target zone center

is down by 0.11 dB.

CHAMBER is now ready to compute the illumination of the ceiling, walls, and

floor, An operating frequency has not been specified at this point, but is irrelcvait

since we do not consider phase. As these computations are made, the following

Inessages are seen:

Computing lllumination of ceiling...

Computing Illumination of side wall...

Computing illumination of floor...

Computing input variables for all runs of subroutine 8ISTATIC...
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The last message indicates that CHAMBER is converting the illumination data

for each grid point from the room coordinate system to the pyramidal coordinate

system at that grid point.

At this point, CHAMBER asks the user to specify one of three available output

options, as shown below:

AVAILABLE OPTIONS:

1) Input: - Fresqency.

- Test point in target region.

Output: - Files of ceiling, wall and floor illumination.

- Files of ceiling, wall and floor scattering

TO the test point.

- Power (totals) scattered to test point.

2) Input: - Frequency range.

- Test point in target region.

Output: - Power (totals) scattered to test point

versus frequency.

3) Input: - Frequency.

- Raege of test points in target region.

Output: - Power (totals) scattered to test point

versus position.

ENTER the desired option number: I

0 For purposes of illustration, option 1 has been chosen. CHAMBER then requests

the user to specify the operating frequency and test point location (in the room

coordinate system). These questions are shown (answered) below:

Enter the frequency of operation (GHz): 10

Enter the Test point X coordinate (ft): 6

Enter the Teat point Y coordinate (ft): 0

Enter the Test point Z coordinate (ft): 24
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Once the responses have been made, CHAMBER lists them and waits for verifi-

cation before continuing, as shown below:

Frequency of operation = 10.00 (GHz)

Test point X coordinate = 6.00 (ft)

Test point Y coordinate = 0.00 (it)

4Test point Z coordinate = 24.00 (it)

Input OK (t/1) ? T

Note that the following is added to CH.LOG.DAT:

Option 1 was chostn, with these parameters:

Frequency of operation a 10.00 (GHz)

Test point X coordinate = 6.00 (ft)

Test point Y cnordinate = 0.00 (it)

Test point Z coordinate = 24.00 (It)

CHAMBER next computes the timing data, which determines whether each

individual grid point is included in the scattered power calculations. The scattering

from the appropriate grid points is then computed. As this is done, the following

messages appear:

Computing tiniug data...

Computing scatter from (entire) ceiling to test point...

Computing scatter from (both) side walls to test point...

Computing scatter from (entire) floor to test point...

Since only option I provides the room illumination as output, the illumination

*data is now normalized:

Normalizing room illujmination data...
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The results of the scattered power computations are now displayed (and written to

the log file). The contribution from the side walls is listed as -10,000 dB because

none arrived during the specified receive window. CHAMBER also asks the user

if data files of the illumination or scattering from ceiling, side wall, or floor are

desired:

Scattered power from entire ceiling.. = -67.80 dE

Scattered power from side walls ...... = -10000.00 d

Scattered power from entire floor .... = -55.76 dB

Total scattered power ................ = -55.49 dB

Enter 1 for data file of Ceiling Illumination... or

Enter 2 for data file of Ceiling Scatter ........ or

Enter 3 for data file of Wall Illumination ...... or

Enter 4 for data file of Wall Scatter ........... or

Enter 5 for data file of Floor Illumination ..... or

Enter 6 for data file of Floor Scatter .......... or
Enter 7 if no data file is desired ................ :2

Another data file (t/f) ? F

To illustrate the format of these data files, the ceiling scatter file has been written,

and the beginning of this file is shown here:

CEIL

SCAT

72 40
4.260000 39.76000
0.2600000 19.75000

-110.8870 -119.8876

-119.9263 -110.9263
-120.0026 -120.0026
-120.1156 -120.1166
-120.2526 -120.2625

-119.3672 -119.3572
-119.3183 -119.3163
-120.6702 -120,6702

-119.9973 -119.9073
-119.4919 -119.4019

-110.069 -119.0596
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-118.6679 -118.6579

-119.9642 -119.9642

-119.8166 -119.8166

-119.6785 -119.6786

-119.5563 --119.5663

-119.4298 -119.4298

-119.3396 -119.3396

-119.2472 -119.2472

-119.1603 -119.1503

-119.0164 -119.0164

-10000.00 -10000.00

-10000.00 -10000.00

The labels CEIL and SCAT serve as identification of file type. The numbers 72

-* and 40 are the number of z' values and y' values considered, respectively. The

next four quantities indicate that the first and last values used for zi are 4.25

and 39.75, respectively, while the first and last values used for y' are 0.25 and

19.75, respectively. The scattered power from each grid point is then written. In

column 1, the scattered power from the grid point whose coordinates are specified

by the first z' and y values is first, followed by the grid point specified by tie first

zI value and the second y' value, and so on. When the last y' value ie reached,

the second zi value and first y' value is considered. The second column holds the

scattered power contribution from the image of the corresponding grid point in the

*o first column. In the case shown, the two columns are identical since the test point

was along the room centerline. Othei data files have the same format, except that

illumination files will have only one column, since illumination is always symmetric.

Also, for wall files, the coordinate y/is replaced by r'. These data files can be used

to generate any type of plot desired. In Chapter V, a plotting program was written

to generate the gray-scale plots shown there.
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CHAMBER ends the run with this reminder:

YOU SHOULD PRINT THE CRLOG.DAT FILE III

Now, let us go back to the point at which the option was chosen, and select

option 2. Again, CHAMBER requests user input at this point. The questions

asked are shown (answered) below:

ENTER the desired option number: 2

Enter the starting frequency (GHz): 2

Enter the ending frequency (GEz): 18

Enter the frequency step (G0z): 1

Enter the Test point X coordinate (ft): 6

Enter the Test point Y coordinate (It): 0

Enter the Test point Z coordinate (It): 24

Once the responses have been made, CHAMBER lists them and waits for verifi-

cation before continuing:

The start frequency .......... = 2.00 (G1z)

The end frequency .......... = 18.00 (01z)

The frequency step ........... a 1.00 (0HZ)

The test point X coordinate.. a 6.00 (ft)
Iae test point Y coordinate.. c 0.00 (ft)

The test point Z coordinate.. = 24.00 (St)

Input 01 (t/1) ? T

Note that the following is added to CH.LOG.DAT:

Option 2 was chosen, with these paramsters:

start frequency .......... 2.00 (G05)

end frequency .......... .i= .00 (06t)

frequency step ........... 1.00 (Gz)

test point I coordinate. 8 .00 (it)

test point Y coordinate. 0.00 (it)

test point Z coordinate. 24.00 (It)
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CHAMBER will first determine the frequency dependence of the absorber

acatter of the ceiling, side walls, floor, and of the room as a whole. This is done

through consideration of a pyramid with parameters identical to those of pyramids

on the ceiling, on the wall, and on the floor. As it does so, this message is seen:

Computing frequency dependence of room scatter...

Next, CHAMBER computes the timing data (which is valid for all frequencies)

and the absorber scatter at the starting frequency. As this is done, the following

messages are displayed:

Computing tijing data...

Computing scatter from (entire) ceiling to test point...

Computing scatter from (both) side salls to test point...

Computing scatter f rom (entire) f loor to test point...

CHAMBER then uses the frequency dependence information to determine the

absorber scatter at each frequency specified. This is much more efficient than

computing the absorber scatter from, every grid point at each frequency.

A plot of ceiling, wall, floor, and total absorber scatter versus frequency is

now made by PLOTTER. The results are also written to an output file, OP-

* TION.2.DAT. This file is shown here:

IT
2.000000 -41.61463 -63.82076 -1000000 -41.77T32

3.000000 -46.03646 -67.34268 -10000.00 -46.29964

* 4.000000 -47,63622 -69.84136 -10000.00 -47.79840

6.000000 -49.47342 -61.7956 -10000.00 -49.736861

6.000000 -61.06706 -63.38319 -10000.00 -61.-32024

7.000000 -62.39697 -64.70213 -10000.00 -62.66916

8.000000 -63.66681 -66.88197 -10000.00 -53.81900

9.000000 -64.67887 -66.88603 -10000.00 -64.84206
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10.00000 -55.49402 -67.80018 -10000.00 -55.75719

11.00000 -56.32187 -68.62801 -10000.00 -56.58506

12.00000 -57.07764 -69.38380 -10000.00 -57.34083

13.00000 -57.77288 -70.07903 -10000.00 -58.03607

14.00000 -58.41657 -70.72273 -10000.00 -568.67976

15.00000 -59.01585 -71.32198 -10000.00 -59.27904

16.00000 -59.57642 -71.88256 -10000.00 -59.83961

17.00000 -60.10300 -72.40914 -10000.00 -60.36618

18.00000 -60.59947 -72.90561 -10000.00 -60.86266

The first number in the file, 17, specifies the number of frequencies considered.

Each row then lists frequency (GHz), total scattered power (dB), scattered power
from the ceiling (dB), scattered power from the side walls (dB), and scattered

power from the floor (dB). Again, a value of -10,000 dB indicates that no absorber

scattered power arrived during the receive window. CHAMBER ends the run with

these reminders:

The option 2 data file has been written.

YOU SHOULD PRIIT THE CE..LOG.DAT FILE I II

Lastly, let us select option 3. Again, CHAMBER requests user input. The

questions asked are shown (answered) below:

ENTER the desired option number: 3

Enter the frequency of operation (GO): 10

Enter the test point coordinate to be varied (e1e,Y=2,Z=3): 3
Enter the starting Z value (ft): 20

Enter the ending Z value (ft): 28

Enter the stop in Z (it): 0.5

Enter the Test point I coordinate (ft): 6

Enter the Test point Y coordinate (ft): 0
9

Once the responses have been made, CHAMBER lists them and waits for verifi.

cation before continuing:
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The frequency of operation = 10.0 (Gffz)

Z ranges from 20.00 to 28.00 in steps of 0.50 (ft)

x = 6.00 (it)
Y = 0.00 (ft)

Input O (t/f) ? T

Note that the following is added to CHLOG.DAT:V

Option 3 was chosen, with these parameters:

The frequency of operation = 10.0 (GHz)

Z ranges from 20.00 to 28.00 in step of 0.60 (It)

I = 6.00 (ft)
Y = 0.00 (ft)

CHAMBER then computes the timing data and all absorber scattering for

each test point location. When working with each individual test point, a message

such as this is seen:

The current test point is: I = 6.00 (it)
Y 0.00 (ft)

Computing timing data...

Computing scatter from (entire) ceiling to teat point...

Computing scatter from (both) side walls to test point...

* Computing scatter from (entire) floor to test point...

A plot of ceiling, wall, floor, and total absorber scatter versus test point

location is now made by PLOTTER. The results are also written to an output file,

OPTION.3.DAT. This file is shown here:

142



17

20.00000 -53.85984 -66.60120 -88.64442 -54.10539

20.50000 -55.78167 -66.82680 -87.93372 -66.14011

21.00000 -55.91900 -67.16277 -90.61380 -66.25962

21.50000 -56.05049 -67.46210 -97.43762 -56.37653

22.00000 -55.87511 -67.64201 -10000.00 -56.17431

22.50000 -55.78619 -67.80883 -10000.00 -56.06770

23.00000 -55.73362 -67.92527 -10000.00 -56.00407

23.50000 -55.62059 -07.97193 -10000.00 -65.88097

24.00000 -55.49404 -67.80015 -10000.00 -65.75723

24.50000 -55.33838 -67.74698 -10000.00 -55.59525

25.00000 -55.37782 -67.80435 -10000.00 -55.63358

25.50000 -55.19663 -67.69741 -10000.00 -55.44688

26.00000 -55.08461 -67.58011 -10000.00 -55.33588

26.50000 -55.41229 -67.72816 -10000.00 -55.67487

27.00000 -56.29288 -71.97845 -10000.00 -56.41177

27.50000 -59.90308 -10000.00 -10000.00 -59.90308

28.00000 -10000.00 -10000.00 -10000.00 -10000.00

The first number in the file, 17, specifies the number of test point locations consid-

ered. Each row then lists the value (in feet) of the test point coordinate that was
varied, total scattered power (dB), scattered power from the ceiling (dB), scattered

power from the side walls (dB), and scattered power from the floor (dB). Again, a

value of -10,000 dB indicates that no absorber scattered power arrived during the

receive window. CHAMBER ends the run with these renmnders:

The option 3 data file has been written.

YOU SHOULD PKINT THE CB.LOG.DAT FILE III

Before closing this section, it is noted that the views provided by the (option 1)

gray-scale plots of Chapter V are depicted in Figure 70.

A.4 Error Meages

Program CHAMBER makes some simple checks on its input data, but does

not attempt to detect all possible errors. However, with these few checks, and the
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Figure 70: V' es provided by grgy-scalc plots of Chapter V.

144

- ~ '~$~ t~tt ~AAL i*~.A * TA~AIA ~A tA ~A~ P. ~ I~1A ~~R A~AtA'~ 1~~.A'~A ~ ?~AVU



ample display of information provided by CHAMBER, it is unlikely that bad data

would go unnoticed.

Let us now consider error messages that may occur while running program

CHAMBER. If the mi coordinate of the tips of the ceiling pyramids is less than the

maximum m' value of the reflector, the following error message is displayed:

X coordinate of tips of pyramids on ceiling iAs too smallI

* If the y' coordinate of the tips of the side wall pyramids is less than the maximum

X' value of the reflector (which is also the maximum y' value of the reflector), then

this error message is displayed:

Y coordinate of tips of pyramids on aide wall is too small!

The z' coordinate of the tips of the floor pyramids should be less than zero. If this

is not the case, the following error message occurs:

X coordinate of tips of floor pyramids is > than zero!

In file CHINPUT.DAT, the user specifies the maximum z' coordinate of interest

in the room, and the zw coordinate of the target zone center. Naturally, the target

zone center should lie within the . extent of the room. If not, the following error

message occurs:

Naxiaum Z coordinate of interest does not go beyond trgset

zone centert

CHAMBER also checks that the test point is in the target region of the range; that

is, that the reflection point corresponding to the test point lies along the parabolic

section of the reflector. If this is not the case, the following is displayedt

Test point not in target regioul.

If any of these occurs, the user will be instructed to modify the data in file

CIIINPUT.DAT, or to input different data from the terminal, us appropriate.
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There are other error messagcs which will not occur during a run of CHAM-

BER. However, they exist in the routines discussed, and thus are mentioned for the

sake of completeness. Recall that subroutine REFLCODE is a modified version

of the reflector code in [9]. This code computed the illumination on the y' > 0

side of the room only (since illumination is symmetric about the room centerline).

The V/ coordinate of field points must be positive. Thus, the following error mes-

sage was included in the original reflector code, and carried over into subroutine

REFLCODE:

Negative valie of y is not allowed.

CHAMBER will not commit this error.

To understand the ne..t message, one must realize that the original reflector

code asked the user to choose one of four types of field cuts. Program CHAMBER

only requires two types of cuts. Thus, when subroutine REFLCODE was written,

it was ensured that these two field cuts would work properly. The same was not

done for the other two cuts (1 and 4). However, they were not eliminated from

the code, in the chance that someone may want to work with them in the future.

For this reason, if these cuts are chosen, the following warning presently appears:

RVLING: Code has not boon modified for IFCt a 1.4.

Again, this will not occur while running CHAMBER.
Finally, the original reflector code displays an error message and executt

a FORTRAN STOP if it comes across a field point for which it cannot find a

corresponding reflection point (on the reflector). When subroutine REFLCODE

comes across a field point along sme field cut for which no reflection point cant

be fourd, it will end its calculations, but will return to the main program with

its partial results and with a flag set to indicate what has happened. The calling

prograin should chexk this flag after each call of subroutine REFL.CODE, and

take whatever action necessary. CHAMBER does check this flag, and if set will

display:

No rMlection point found - sosithing is wrong1
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The message indicates "something is wrong" since CHAMBER is specifically de-

signed to consider only field points that have corresponding reflection points. This

message shodd never appear.

One last point must be made on subroutine REFLCODE. While the mea-

sured feed pattern option was carried over from the original reflector code, and

a. while CHAMBER will not object to one specifying a measured feed pattern in file

CHINPUT.DAT, this option has not been exercised by the author.

147



[13] W. D. Burnside, Personal communication, The Ohio State University Elec-
troscience Laboratory.

[14] G. Clerici and J. D. Young, "Analysis of Anechoic Room Scattering for Com-
pact Range Performance Prediction," Tech. Report 719267-11, The Ohio State
University Electroscience Laboratory, January 1988.

S

S

1

14
0~


